Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (2): 197-201    DOI:
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE HOT CORROSION OF NiAl-20%Fe WITH ITS SURFACE ALUMINIDE COATING
ZENG Chaoliu;WU Weitao(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015); GUO jianting(Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015)(Manuscript received 1995-06-05)
Cite this article: 

ZENG Chaoliu;WU Weitao(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015); GUO jianting(Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015)(Manuscript received 1995-06-05). HIGH TEMPERATURE HOT CORROSION OF NiAl-20%Fe WITH ITS SURFACE ALUMINIDE COATING. Acta Metall Sin, 1996, 32(2): 197-201.

Download:  PDF(385KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The behaviours of high temperature hot corrosion of NiAl, NiAl-20%Fe (atom fraction) without and with aluminized coating in the presence of Na_2SO_4 film at 950℃in air were conducted. NiAl alloy shows hot corrosion resistance to some extent by the formation of Al_2O_3 scale. But, the cracking and dissolution of Al_2O_3 scale may cause its rapid hot corrosion. Additives of 20%Fe may deteriorate the hot corrosion resistance owing to the absence of an Al_2O_3 scale. Aluminizing treatment may improve corrosion resistance of NiAl-20%Fe by promoting the formation of an Al_2O_3 scale. NiAl-20%Fe with aluminide coating has slower corrosion rate than NiAl alloy, which may be attributed to that the aluminide coating has higher Al content, and the Al_2O_3 scale in coating has better cracking resistance than NiAl alloy.(Correspondent: ZENG Chaoliu, Institute of Corrosion and Protection of Metals, Chinese Academy of Sciences,Shenyang 110015)
Key words:  intermetallic compound      NiAl      NiAl-20%Fe      aluminide coating      Na_2SO_4      hot corrosion     
Received:  18 February 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I2/197

1 VedulaK,PathaveV,Aslanidis I,TitranRH.MatResSocSympProc,1985;39:4112VedulaK,StephensJR,MatResSocSympProc,1987;81:3813RudyM,SanthoffG.MatResSocSymPProc,1985;39:3274GuhaS,MunroeRP,BakerI.MatResSocSympProc,1989;133:6335RybickiGC,SmialekJL.OxidMet,1989;32:2756GrabkeHJ,SteinhorstM,BrummM,WiemerD.OxidMet,1991;35:1997HindamHM,SmeltzerWW.JElectrochemSoc,1980;127:16308SmialekJL.MetTrans,1987;9A:309
[1] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[2] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[4] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[5] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[6] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[7] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[8] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[9] GAO Bo, WANG Lei, SONG Xiu, LIU Yang, YANG Shuyu, CHIBA Akihiko. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. 金属学报, 2019, 55(10): 1273-1281.
[10] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[12] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[13] Chengyang JIANG, Yingfei YANG, Zhengyi ZHANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating[J]. 金属学报, 2018, 54(4): 581-590.
[14] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[15] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
No Suggested Reading articles found!