Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors
JIANG Minqiang1,2(), GAO Yang1,2
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 2.School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:
JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors. Acta Metall Sin, 2021, 57(4): 425-438.
Metallic glasses (MGs) are formed by the deep undercooling of high-temperature melt up to the glass transition temperature, and this process avoids the crystallization of the melt into ordered configurations of atoms. The atomic packing of MGs lacks a long-range periodicity. MGs reside at metastable energy states far away from the equilibrium of thermodynamics, but they are jammed in dynamics. These features provide MGs with remarkable mechanical, physical, and chemical properties, such as very high strength that is close to the ideal limit. However, the plastic deformation of MGs at room temperature is easily localized to form nanoscale shear bands, thereby resulting in limited macroscopic plasticity. Moreover, physical ageing spontaneously reduces their energies toward an equilibrium state, thereby further weakening the plastic deformation ability of MGs, which is known as ageing-induced brittleness. Recent studies have shown that MGs can be rejuvenated with external energy injection into more disordered high-energy states in structure. This process, which is the inverse of physical ageing, can effectively improve the global plasticity of MGs and is expected to solve the problems of shear banding and physical ageing that restrict the applications of such materials. Therefore, the relevant aspects of the rejuvenation of MGs have attracted increasing interest. This article first introduces methods for the rejuvenation of MGs starting from the concepts of ageing and rejuvenation of glasses, and then summarizes the influencing factors of rejuvenation and the effects of rejuvenation on plasticity and other mechanical behaviors of MGs. Furthemore, the physical mechanism of rejuvenation is discussed briefly. Finally, several conclusions are drawn in this field, and some important problems that deserve further investigation are proposed.
Fund: National Natural Science Foundation of China (NSFC)(11972345);NSFC Basic Science Center for “Multiscale Problems in Nonlinear Mechanics”(11988102)
About author: JIANG Minqiang, professor, Tel: (010)82544089, E-mail: mqjiang@imech.ac.cn
Fig.1 Schematic diagram of thermodynamic enthalpy or entropy evolution of alloy melts during crystallization (route 1), supercooling-glass transition (route 2), physical ageing (route 3) and rejuvenation (route 4) (Tg—glass transition temperature, Tm—melting point, TK—Kauzmann temperature, high-T—high temperature)
Fig.2 Schematic diagram of specific heat capacity curves of the initial and relaxed samples
Fig.3 Ultrafast rejuvenation of metallic glasses via a double-target plate impact technique (a) and the stress wave design (b) (PMMA—poly(methyl methacrylate), PVD—physical vapour deposition, C1—a forward compressive wave, C2—a backward compressive wave, R1—a release wave that is the reflection of C1 at the free surface of the back target, R2—the release (unloading) wave that is the reflection of C2 at the free surface of the flyer, Δt—the duration, σp—the stress amplitude)[99]
Fig.4 The effect of load amplitude on structural rejuvenation of a Zr-based metallic glass under shock compression (ΔHrel—excess relaxation enthalpy, HEL—Hugoniot elastic limit)[99]
Fig.5 Influence of loading time on rejuvenation of two Cu-Zr metallic glasses under elastostatic compression[62]
Fig.6 Plasticity modification of metallic glasses based on rejuvenation methods
Fig.7 Effects of the rejuvenation on relative elastic modulus (Y / Y0) (a)[126], hardness (b)[99], initial yield pressure (c)[125], and plastic deformation (d)[105] of metallic glasses
Fig.8 Boson peaks of the as-cast and rejuvenated Zr-based metallic glasses (a)[99], and the correlation between Boson peak height (HBP) and structural enthalpy (b) and fictive temperature (c) (BP—Boson peak, cp—specific heat capacity, γ—Sommerfeld coefficient, T—temperature, Tf—fictive temperature)[74]
Fig.9 Relaxation dynamical behaviors of structural rejuvenation of metallic glasses (E''—the loss modulus, —the loss modulus of α-peak, Γ—relaxation rate)
Fig.10 Structural characterization of the rejuvenated structures of a Zr-based metallic glass, including HRTEM observations and SAED patterns (insets) (a-d) and radial distribution functions G(r) (r—radius) (e)[99]
1
Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature, 1960, 185: 68
2
Luo W K, Sheng H W, Alamgir F M, et al. Icosahedral short-range order in amorphous alloys [J]. Phys. Rev. Lett., 2004, 92: 145502
3
Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
4
Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
5
Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
6
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
7
Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., 1989, 30: 965
8
Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans., JIM, 1993, 34: 1234
9
Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
10
Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett., 2005, 87: 181915
11
Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass [J]. Appl. Phys. Lett., 2006, 88: 122106
12
Jiang M Q, Duan G H, Dai L H. Metallic glass nanofilms [J]. J. Non-Cryst. Solids, 2011, 357: 1621
13
Wu Y, Zhou D Q, Song W L, et al. Ductilizing bulk metallic glass composite by tailoring stacking fault energy [J]. Phys. Rev. Lett., 2012, 109: 245506
14
Luo P, Cao C R, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates [J]. Nat. Commun., 2018, 9: 1389
15
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
16
Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water [J]. J. Non-Cryst. Solids, 2019, 517: 119
17
Dyre J C. Heirs of liquid treasures [J]. Nat. Mater., 2004, 3: 749
18
Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
Wei D, Yang J, Jiang M Q, et al. Assessing the utility of structure in amorphous materials [J]. J. Chem. Phys., 2019, 150: 114502
20
Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
21
Wang Y J, Wei D, Han D, et al. Does structure determine property in amorphous solids? [J]. Chin J. Theor. Appl. Mech., 2020, 52: 303
Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
23
Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
24
Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
25
Jiang M Q, Peterlechner M, Wang Y J, et al. Universal structural softening in metallic glasses indicated by boson heat capacity peak [J]. Appl. Phys. Lett., 2017, 111: 261901
26
Yang J, Wang Y J, Ma E, et al. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses [J]. Phys. Rev. Lett., 2019, 122: 015501
27
Han D, Wei D, Yang J, et al. Atomistic structural mechanism for the glass transition: Entropic contribution [J]. Phys. Rev., 2020, 101B: 014113
28
Jiang M Q, Dai L H. Intrinsic correlation between fragility and bulk modulus in metallic glasses [J]. Phys. Rev., 2007, 76B: 054204
29
Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
30
Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
31
Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
32
Jiang M Q, Wilde G, Dai L H. Origin of stress overshoot in amorphous solids [J]. Mech. Mater., 2015, 81: 72
33
Jiang M Q, Wei Y P, Wilde G, et al. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation [J]. Appl. Phys. Lett., 2015, 106: 021904
34
Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
Yang J, Duan J, Wang Y J, et al. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes [J]. Eur. Phys. J., 2020, 43E: 56
37
Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. Int. J. Impact Eng., 2000, 24: 435
38
Grimberg A, Baur H, Bochsler P, et al. Solar wind neon from genesis: Implications for the lunar noble gas record [J]. Science, 2006, 314: 1133
39
Schroers J, Kumar G, Hodges T M, et al. Bulk metallic glasses for biomedical applications [J]. JOM, 2009, 61(9): 21
40
Huang X, Ling Z, Liu Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. Int. J. Impact Eng., 2012, 42: 1
41
Hofmann D C, Hamill L, Christiansen E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Adv. Eng. Mater., 2015, 17: 1313
42
Jiang M Q, Huang B M, Jiang Z J, et al. Joining of bulk metallic glass to brass by thick-walled cylinder explosion [J]. Scr. Mater., 2015, 97: 17
43
Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios [J]. Nat. Nanotechnol., 2020, 15: 875
44
Yu B S, Sun Y H, Bai H Y, et al. Highly energetic and flammable metallic glasses [J]. Sci. China Phys. Mech. Astron., 2020, 63: 276112
45
Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
46
Wang W H. Bulk metallic glasses with functional physical properties [J]. Adv. Mater., 2009, 21: 4524
47
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
48
Liang X B, Fan J W, Zhang Z B, et al. Microstructure and corrosion properties of aluminum base amorphous and nanocrystalline composite coating [J]. Acta Metall. Sin., 2018, 54: 1193
Jiang M Q, Jiang F, Keryvin V, et al. Relation between ideal and real strengths of metallic glasses [J]. J. Non-Cryst. Solids, 2012, 358: 3119
51
Jiang M Q, Dai L H. On the origin of shear banding instability in metallic glasses [J]. J. Mech. Phys. Solids, 2009, 57: 1267
52
Jiang M Q, Wang W H, Dai L H. Prediction of shear-band thickness in metallic glasses [J]. Scr. Mater., 2009, 60: 1004
53
Jiang M Q, Dai L H. Shear-band toughness of bulk metallic glasses [J]. Acta Mater., 2011, 59: 4525
54
Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
55
Jiang M Q, Ling Z, Meng J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philos. Mag., 2008, 88: 407
56
Jiang M Q, Meng J X, Keryvin V, et al. Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass [J]. Intermetallics, 2011, 19: 1775
57
Jiang M Q, Dai L H. The “tension transformation zone” model of amorphous alloys [J]. Chin. Sci. Bull., 2017, 62: 2346
58
Amir A, Oreg Y, Imry Y. On relaxations and aging of various glasses [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 1850
59
Gallino I, Busch R. Relaxation pathways in metallic glasses [J]. JOM, 2017, 69: 2171
60
Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses [J]. J. Phys.: Condens. Matter, 2017, 29: 503002
61
Lee S C, Lee C M, Lee J C, et al. Structural disordering process of an amorphous alloy driven by the elastostatic compression at room temperature [J]. Appl. Phys. Lett., 2008, 92: 151906
62
Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys [J]. Acta Mater., 2008, 56: 5440
63
Park K W, Lee C M, Lee M R, et al. Paradoxical phenomena between the homogeneous and inhomogeneous deformations of metallic glasses [J]. Appl. Phys. Lett., 2009, 94: 021907
64
Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress [J]. Nat. Mater., 2006, 5: 857
65
Concustell A, Méar F O, Suriñach S, et al. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening [J]. Philos. Mag. Lett., 2009, 89: 831
66
González S, Fornell J, Pellicer E, et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass [J]. Appl. Phys. Lett., 2013, 103: 211907
67
Lee M H, Lee K S, Das J, et al. Improved plasticity of bulk metallic glasses upon cold rolling [J]. Scr. Mater., 2010, 62: 678
68
Haruyama O, Kisara K, Yamashita A, et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses [J]. Acta Mater., 2013, 61: 3224
69
Xu Y L, Shi B, Ma Z K, et al. Evolution of shear bands, free volume, and structure in room temperature rolled Pd40Ni40P20 bulk metallic glass [J]. Mater. Sci. Eng., 2015, A623: 145
70
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
71
Xiao H B, Wang X D, Zhang P, et al. Contribution of cryogenic thermal cycling to the atomic dynamics in a La-based bulk metallic glass with different initial states [J]. J. Appl. Phys., 2020, 127: 205104
72
Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater., 2010, 58: 429
73
Meng F Q, Tsuchiya K, Seiichiro II, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass [J]. Appl. Phys. Lett., 2012, 101: 121914
74
Zhou H B, Hubek R, Peterlechner M, et al. Two-stage rejuvenation and the correlation between rejuvenation behavior and the boson heat capacity peak of a bulk metallic glass [J]. Acta Mater., 2019, 179: 308
75
Tong Y, Dmowski W, Yokoyama Y, et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep [J]. Scr. Mater., 2013, 69: 570
76
Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep [J]. Acta Mater., 2018, 148: 384
77
Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
78
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
79
Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. J. Chem. Phys., 1952, 20: 411
80
Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition [J]. J. Chem. Phys., 1961, 34: 120
81
Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
82
Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures [J]. Chem. Rev., 1948, 43: 219
83
Harmon J S, Demetriou M D, Johnson W L, et al. Deformation of glass forming metallic liquids: Configurational changes and their relation to elastic softening [J]. Appl. Phys. Lett., 2007, 90: 131912
84
Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses [J]. Acta Mater., 2015, 86: 240
85
Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
86
Bouchaud J P, Dupuis V, Hammann J, et al. Separation of time and length scales in spin glasses: Temperature as a microscope [J]. Phys. Rev., 2001, 65B: 024439
87
Wolynes P G. Spatiotemporal structures in aging and rejuvenating glasses [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 1353
88
Méar F O, Lenk B, Zhang Y, et al. Structural relaxation in a heavily cold-worked metallic glass [J]. Scr. Mater., 2008, 59: 1243
89
Battezzati L, Riontino G, Baricco M, et al. A DSC study of structural relaxation in metallic glasses prepared with different quenching rates [J]. J. Non-Cryst. Solids, 1984, 61-62: 877
90
Lee J C. Calorimetric study of β-relaxation in an amorphous alloy: An experimental technique for measuring the activation energy for shear transformation [J]. Intermetallics, 2014, 44: 116
91
Park K W, Lee C M, Wakeda M, et al. Homogeneous deformation of bulk amorphous alloys during elastostatic compression and its packing density dependence [J]. Scr. Mater., 2008, 59: 710
92
Louzguine-Luzgin D V, Zadorozhnyy V Y, Ketov S V, et al. On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses [J]. Acta Mater., 2017, 129: 343
93
Cao Q P, Li J F, Zhou Y H, et al. Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 87: 101901
94
Cao Q P, Li J F, Zhou Y H, et al. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 86: 081913
95
Ebner C, Escher B, Gammer C, et al. Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion [J]. Acta Mater., 2018, 160: 147
96
Flores K M, Dauskardt R H. Mean stress effects on flow localization and failure in a bulk metallic glass [J]. Acta Mater., 2001, 49: 2527
97
Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
98
Li W D, Bei H B, Gao Y F. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses [J]. Intermetallics, 2016, 79: 12
99
Ding G, Li C, Zaccone A, et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression [J]. Sci. Adv., 2019, 5: eaaw6249
100
Saida J, Yamada R, Wakeda M, et al. Thermal rejuvenation in metallic glasses [J]. Sci. Technol. Adv. Mater., 2017, 18: 152
101
Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing [J]. Sci. Rep., 2015, 5: 10545
102
Kovacs A J. Transition vitreuse dans les polymères amorphes. Etude phénoménologique [J]. Adv. Polym. Sci., 1963, 3: 394
103
Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
104
Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
105
Miyazaki N, Wakeda M, Wang Y J, et al. Prediction of pressure-promoted thermal rejuvenation in metallic glasses [J]. npj Comput. Mater., 2016, 2: 16013
106
Yokoyama Y, Yamasaki T, Liaw P K, et al. Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys [J]. Acta Mater., 2008, 56: 6097
107
Wu T W, Spaepen F. The relation between enbrittlement and structural relaxation of an amorphous metal [J]. Philos. Mag., 1990, 61B: 739
108
Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
109
Lee S J, Yoo B G, Jang J I, et al. Irreversible structural change induced by elastostatic stress imposed on an amorphous alloy and its influence on the mechanical properties [J]. Met. Mater. Int., 2008, 14: 9
110
Zhang M, Wang Y M, Li F X, et al. Mechanical relaxation-to-rejuvenation transition in a Zr-based bulk metallic glass [J]. Sci. Rep., 2017, 7: 625
111
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall. Mater., 1977, 25: 407
112
Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
113
Langer J S. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature [J]. Phys. Rev., 2004, 70E: 041502
114
Jiang M Q, Jiang S Y, Ling Z, et al. Smaller Deborah number inducing more serrated plastic flow of metallic glass [J]. Comp. Mater. Sci., 2009, 46: 767
115
Gao Y F. An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model [J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 1329
116
Jiang M Q, Wilde G, Dai L H. Shear band dilatation in amorphous alloys [J]. Scr. Mater., 2017, 127: 54
117
Sun X, Ding G, Mo G, et al. Dilatancy signatures of amorphous plasticity probed by X-ray synchrotron radiation [J]. Intermetallics, 2019, 107: 34
118
Lu Y Z, Jiang M Q, Lu X, et al. Dilatancy of shear transformations in a colloidal glass [J]. Phys. Rev. Appl., 2018, 9: 014023
119
Scalliet C, Berthier L. Rejuvenation and memory effects in a structural glass [J]. Phys. Rev. Lett., 2019, 122: 255502
120
Lunkenheimer P, Schneider U, Brand R, et al. Glassy dynamics [J]. Contemp. Phys., 2000, 41: 15
121
Küchemann S, Maaß R. Gamma relaxation in bulk metallic glasses [J]. Scr. Mater., 2017, 137: 5
122
Song L J, Xu W, Huo J T, et al. Activation entropy as a key factor controlling the memory effect in glasses [J]. Phys. Rev. Lett., 2020, 125: 135501
123
Luo P, Li Y Z, Bai H Y, et al. Memory effect manifested by a boson peak in metallic glass [J]. Phys. Rev. Lett., 2016, 116: 175901
124
Lee S C, Lee C M, Yang J W, et al. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties [J]. Scr. Mater., 2008, 58: 591
125
Guo W, Yamada R, Saida J. Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment [J]. Intermetallics, 2018, 93: 141
126
Ke H B, Wen P, Peng H L, et al. Homogeneous deformation of metallic glass at room temperature reveals large dilatation [J]. Scr. Mater., 2011, 64: 966
127
Gelin S, Tanaka H, Lemaître A. Anomalous phonon scattering and elastic correlations in amorphous solids [J]. Nat. Mater., 2016, 15: 1177
128
Schirmacher W, Ruocco G, Scopigno T. Acoustic attenuation in glasses and its relation with the boson peak [J]. Phys. Rev. Lett., 2007, 98: 025501
129
Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass [J]. Nat. Mater., 2008, 7: 870
130
Luo P, Wen P, Bai H Y, et al. Relaxation decoupling in metallic glasses at low temperatures [J]. Phys. Rev. Lett., 2017, 118: 225901
131
Qiao J C, Wang Y J, Zhao L Z, et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses [J]. Phys. Rev., 2016, 94B: 104203
132
Yuan C C, Lv Z W, Pang C M, et al. Ultrasonic-assisted plastic flow in a Zr-based metallic glass [J]. Sci. China Mater., 2020, 64: 448
133
Huang B, Ge T P, Liu G L, et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography [J]. Acta Mater., 2018, 155: 69
134
Ross P, Küchemann S, Derlet P M, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass [J]. Acta Mater., 2017, 138: 111
135
Suzuki Y, Haimovich J, Egami T. Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction [J]. Phys. Rev., 1987, 35B: 2162