Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (11): 1222-1226    DOI:
Current Issue | Archive | Adv Search |
FORMATION MECHANISM OF NiAl/TiC NANOCOMPOSITE BY MECHANICAL ALLOYING
ZHOU Lanzhang;GUO Jianting;QUAN Mingxiu(Institute of Metal Research;The Chinese Academy of Sciences;Shenyang 110015)
Cite this article: 

ZHOU Lanzhang;GUO Jianting;QUAN Mingxiu(Institute of Metal Research;The Chinese Academy of Sciences;Shenyang 110015). FORMATION MECHANISM OF NiAl/TiC NANOCOMPOSITE BY MECHANICAL ALLOYING. Acta Metall Sin, 1997, 33(11): 1222-1226.

Download:  PDF(1188KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ni, Al, Ti, and C powders mixed at a composition of Ni37Al37Ti37C13 were milled in a high-energy ball mill.Upon milling for 107 min,an abrupt reaction occurred, resulting in in situ formation of NiAl and TiC compounds.The formation mechanism is suggested to be two separated combustion reactions, i.e. Ni+Al→NiAl and Ti+C→TiC. The combustion reaction conducted incompletely and small amount of elemental powders still existed. Prolonged milling led to gradual formation of NiAl and TiC as well as the refinement of grain sizes. The final saturated grain size for TiC is 2.5 times as large as that for NiAl, though TiC has a much higher melting point compared with NiAl, this is attributed to a different deformation mechanism.
Key words:  formation mechanism      mechanical alloying      nanocomposite      intermetallics     
Received:  18 November 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I11/1222

1MiracleDB.ActaMetallMater,1993;41:649
2NoebeRD,BowmanRR,NathalMV.IntMaterRev,1993;38:193
3HwangSJ,NashP,DollarM,DymekS.MaterSciForum,1992;88—90:611
4KochCC.NanostructMater,1993;2:109
5AtzmonM.PhysRevLett,1990;64:487
6MaE,PaganJ,CranfordG,AtzmonM.JMaterRes,1993;8:1836
7PatankarSN,XiaoSQ,LewandowskiJJ,HeuerAH.JMaterRes,1993;8:1311
8ParkYH,HashimotoH,AbeT,WatanabeR.MaterSciEng,1994;A181/182:1291
9LiuZG,GuoJT,YeLL,LiGS,HuZQ.ApplPhysLett,1994;65:2666
10EckertJ,SchwarzL,HellsternE,UrbanK.JApplPhys,1988;64:3224
11KochCC.AnnRevMaterSci,1989;19:121
12DeeviSC.JMaterSci,1991;26:3343
13LiuZG,GuoJT,LiGS,HuZQ.ActaMetallSin(Engl.Ed),1994;7:7
14BarinI,KnackeO,Kwbashewski.ThermochemicalPropertiesofInorganicSubstances(Supplement).Berlin:Springer-Verlag,1977
15GuoJT,XingZP.JMaterRes,1997;12:1083}
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[8] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
[10] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[13] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[15] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
No Suggested Reading articles found!