Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 59-72    DOI: 10.11900/0412.1961.2018.00461
Orginal Article Current Issue | Archive | Adv Search |
Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites
Bolü XIAO(), Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(4377KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper describes the research progress in hot deformation behaviors of discontinuously reinforced aluminum (DRA) composite, including research method, deformation mechanism and hot workability. The reliability of constitutive equation and processing map for description of flowing behaviors and deformation mechanisms in the previous studies were discussed. Based on that, the strain rate and temperature sensitivities of flow stress were introduced to further identify the deformation mechanisms. Deformation characteristics and microstructures of the composites with different reinforcements were illustrated. Finally, the future researches of hot deformation of DRA composite are suggested.

Key words:  metal matrix composite      hot working      constitutive equation      processing map      deformation mechanism     
Received:  08 October 2018     
ZTFLH:  TB333  
Fund: Supported by National Key Research and Development Program of China (No.2017YFB0703104) and Joint Funds of National Natural Science Foundation of China (No.U1508216)

Cite this article: 

Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites. Acta Metall Sin, 2019, 55(1): 59-72.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00461     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/59

Particle Volume Particle Matrix Preparation Temperature Strain rate Qa Ref.
fraction size alloy method range range kJmol-1
% μm s-1
Al2O3 10 20 6061Al SC 25~250 0.1~5 125 [44]
250~540 0.1~5 213
Al2O3 20 20 6061Al SC 25~250 0.1~5 207 [45]
250~540 0.1~5 245
Al2O3 20 20 6061Al SC 350~500 0.001~0.1 155 [46]
Al2O3 20 15 2014Al SC 300~500 0.01~1 227 [47]
B4C 15 23 Pure Al SC 300~500 0.001~1 186.4 [48]
B4C 15 23 Al-0.4Sc SC 300~500 0.001~1 196.1 [48]
B4C 15 23 Al-0.4Sc-0.24Zr SC 300~500 0.001~1 206.6 [48]
SiCp 30 3.5 2024Al PM 350~500 0.01~10 272.8 [49]
Table 1  Comparison of the apparent activation energies (Qa) of hot deformation for different discontinuously reinforced aluminum (DRA) composites[44,45,46,47,48,49]
Fig.1  Comparison of Young's modulus varying with temperature between the empirical equations and the experimental data in Al alloys
Fig.2  3D power dissipation coefficient (η) maps of 2.0%CNT/2024Al (mass fraction) composite at temperatures of 200, 300 and 400 ℃ (a), strain rates of 0.001, 0.01 and 0.1 s-1 (b)[74]
Fig.3  Contour map of strain rate sensitivity index (m) (a) and processing map (b) for 14%SiCp/2014Al (volume fraction) composite at true strain of 0.8, grey area up right corner in (b) denotes flowing instability which resulted in damage of specimens at higher strain of 0.9 (c)[9]
Fig.4  Contour maps of temperature sensitive index (s) for 14%SiCp/2014Al (volume fraction) composite at true strain of 0.8[9]
Fig.5  EBSD image in shear deformation region of 17%SiCp/2009Al (volume fraction) composite compressed at 400 ℃ and 1 s-1 (a), and 500 ℃ and 1 s-1 (b) with ε =0.7 (Low angle boundaries 2°~15° are marked by red lines, high angle boundaries ≥15° are marked by black lines, SiC particles are shown by black)
Fig.6  TEM images in compressive deformation region of 17%SiCp/2009Al (volume fraction) composite compressed at 400 ℃ and 1 s-1 (a), and 500 ℃ and 1 s-1 (b) with ε =0.7 (DRX—dynamic recrystallization, SG—subgrain)
Fig.7  Morphologies of CNT in 1.5%CNT/2009Al (volume fraction) composite before (a) and after (b) rolling[117]
[1] MarketsandMarkets. Metal matrix composite market by type (aluminum MMC, magnesium MMC, refractory MMC), production technology, reinforcement (continuous, discontinuous, particle), end use industry, and region-global forecast to 2021 [R]. Birmingham: Marketsandmarkets, 2017
[2] Nardone V C, Prewo K M.On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scr. Metall., 1986, 20: 43
[3] Evans A, San Marchi C, Mortensen A.Metal Matrix Composites in Industry: An Introduction and a Survey[M]. Boston, MA: Springer, 2003: 22
[4] Divecha A P, Fishman S G, Karmarkar S D.Silicon carbide reinforced aluminum—A formable composite[J]. JOM, 1981, 33(9): 12
[5] Zhang W L, Wang J X, Yang F, et al.Recrystallization kinetics of cold-rolled squeeze-cast Al/SiC/15w composites[J]. J. Compos. Mater., 2006, 40: 1117
[6] Jahedi M, Mani B, Shakoorian S, et al.Deformation rate effect on the microstructure and mechanical properties of Al-SiCp composites consolidated by hot extrusion[J]. Mater. Sci. Eng., 2012, A556: 23
[7] Stonis M, Rüther T, Behrens B A.Analysis of material characteristics and forging parameters for flashless forged aluminum-matrix composites[J]. Mater. Manuf. Processes, 2014, 29: 140
[8] Tham L M, Gupta M, Cheng L.Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites[J]. Mater. Sci. Eng., 2002, A326: 355
[9] Huang Z Y, Zhang X X, Xiao B L, et al.Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite[J]. J. Alloys Compd., 2017, 722: 145
[10] El-Sabbagh A M, Soliman M, Taha M A, et al. Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting[J]. J. Mater. Process. Technol., 2013, 213: 1669
[11] Zhou L, Huang Z Y, Wang C Z, et al.Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite[J]. Mech. Mater., 2016, 93: 32
[12] Pakdel A, Witecka A, Rydzek G, et al.A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al-B4C composites produced by semisolid stir casting[J]. Mater. Sci. Eng., 2018, A721: 28
[13] Shi W C, Shan D B.Effect of whisker breakage on the forgeability and the tensile properties of the forged 2024Al/Al18B4O33w composite[J]. Mater. Charact., 2018, 135: 303
[14] Zhang J Q, Di H S, Mao K, et al.Processing maps for hot deformation of a high-Mn TWIP steel: A comparative study of various criteria based on dynamic materials model[J]. Mater. Sci. Eng., 2013, A587: 110
[15] Cui X F, Mi X J, Luo Z, et al.Effects of Cr content on the hot compression deformation behavior of Ti5Mo5V3Al-xCr alloys[J]. J. Mater. Eng. Perform., 2015, 24: 67
[16] Johnson G R, Cook W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [R]. The Hague: International ballistics Society, 1983
[17] Bodner S R, Partom Y.Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. J. Appl. Mech., 1975, 42: 385
[18] Fields D S, Backofen W A.Determination of strain hardening characteristics by torsion testing [A]. Proceedings of the 60th Annual Meeting of the American Society for Testing and Materials[C]. West Conshohocken: ASTM International, 1957: 1259
[19] Khan A S, Huang S J.Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104 s-1[J]. Int. J. Plast., 1992, 8: 397
[20] Khan A S, Liang R Q.Behaviors of three BCC metal over a wide range of strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 1999, 15: 1089
[21] Khan A S, Liang R Q.Behaviors of three BCC metals during non-proportional multi-axial loadings: Experiments and modeling[J]. Int. J. Plast., 2000, 16: 1443
[22] Khan A S, Suh Y S, Kazmi R.Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. Int. J. Plast., 2004, 20: 2233
[23] Chen G, Li J, He Y L, et al.A new approach to the determination of plastic flow stress and failure initiation strain for aluminum alloys cutting process[J]. Comput. Mater. Sci., 2014, 95: 568
[24] Siswanto W A, Nagentrau M, Mohd Tobi A L, et al. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis[J]. J. Mech. Sci. Technol., 2016, 30: 5093
[25] Zerilli F J, Armstrong R W.Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61: 1816
[26] Follansbee P S, Kocks U F.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metall., 1988, 36: 81
[27] Nemat-Nasser S, Isaacs J B.Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys[J]. Acta Mater., 1997, 45: 907
[28] Shafieizad A H, Zarei-Hanzaki A, Ghambari M, et al.High temperature flow behavior and microstructure of Al-Cu/Mg2Si metal matrix composite[J]. J. Eng. Mater. Technol., 2015, 137: 021006
[29] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metall., 1966, 14: 1136
[30] Nardone V C, Strife J R.Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4)[J]. Metall. Trans., 1987, 18A: 109
[31] Nieh T G, Xia K, Langdon T G.Mechanical properties of discontinuous SiC reinforced aluminum composites at elevated temperatures[J]. J. Eng. Mater. Technol., 1988, 110: 77
[32] McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mater. Sci. Eng., 2002, A322: 43
[33] Mohamed F A, Park K T, Lavernia E J.Creep behavior of discontinuous SiC-Al composites[J]. Mater. Sci. Eng., 1992, A150: 21
[34] Park K T, Lavernia E J, Mohamed F A.High-temperature deformation of 6061 Al[J]. Acta Metall. Mater., 1994, 42: 667
[35] Mishra R S, Bieler T R, Mukherjee A K.Superplasticity in powder metallurgy aluminum alloys and composites[J]. Acta Metall. Mater., 1995, 43: 877
[36] Li Y, Nutt S R, Mohamed F A.An investigation of creep and substructure formation in 2124 Al[J]. Acta Mater., 1997, 45: 2607
[37] Mishra R S, Bieler T R, Mukherjee A K.Mechanism of high strain rate superplasticity in aluminium alloy composites[J]. Acta Mater., 1997, 45: 561
[38] Li Y, Langdon T G.A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites[J]. Acta Mater., 1999, 47: 3395
[39] Kaibyshev R, Kazyhanov V, Musin F.Hot plastic deformation of aluminium alloy 2009-15%SiCw composite[J]. Mater. Sci. Technol., 2002, 18: 777
[40] Kocks U F.A statistical theory of flow stress and work-hardening[J]. Philos. Mag., 1966, 13A: 541
[41] Arzt E, Wilkinson D S.Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction[J]. Acta Metall., 1986, 34: 1893
[42] Arzt E, R?sler J.The kinetics of dislocation climb over hard particles—II. Effects of an attractive particle-dislocation interaction[J]. Acta Metall., 1988, 36: 1053
[43] Mishra R S, Nandy T K, Greenwood G W.The threshold stress for creep controlled by dislocation-particle interaction[J]. Philos. Mag., 1994, 69A: 1097
[44] Xia X X, McQueen H J, Sakaris P. Hot deformation mechanisms in a 10 vol% Al2O3 particle reinforced 6061 Al matrix composite[J]. Scr. Metall. Mater., 1995, 32: 1185
[45] Xia X X, McQueen H J. Deformation behaviour and microstructure of a 20% Al2O3 reinforced 6061 Al composite[J]. Appl. Compos. Mater., 1997, 4: 333
[46] Cerri E, Spigarelli S, Evangelista E, et al.Hot deformation and processing maps of a particulate-reinforced 6061+20% Al2O3 composite[J]. Mater. Sci. Eng., 2002, A324: 157
[47] Ferry M, Munroe P R.Hot working behaviour of Al-Al2O3 particulate reinforced metal matrix composite[J]. Mater. Sci. Technol., 1995, 11: 633
[48] Qin J, Zhang Z, Chen X G.Hot deformation and processing maps of Al-15%B4C composites containing Sc and Zr[J]. J. Mater. Eng. Perform., 2017, 26: 1673
[49] Sun Y L, Xie J P, Hao S M, et al.Dynamic recrystallization model of 30%SiCp/Al composite[J]. J. Alloys Compd., 2015, 649: 865
[50] Yavari P, Mohamed F A, Langdon T G.Creep and substructure formation in an Al-5% Mg solid solution alloy[J]. Acta Metall., 1981, 29: 1495
[51] Li Y, Langdon T G.Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates[J]. Acta Mater., 1997, 45: 4797
[52] Kaibyshev R, Sitdikov O, Mazurina I, et al.Deformation behavior of a 2219 Al alloy[J]. Mater. Sci. Eng., 2002, A334: 104
[53] Wang S, Luo J R, Hou L G, et al.Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression[J]. Mater. Des., 2016, 107: 277
[54] Wang S, Luo J R, Hou L G, et al.Identification of the threshold stress and true activation energy for characterizing the deformation mechanisms during hot working[J]. Mater. Des., 2017, 113: 27
[55] European Committee for Standardization. EVS-EN 1999-1-2:2007 Design of aluminium structures—Part 1-2: Structural fire design[S]. London: British Standard Institute, 2007: 21
[56] Maljaars J, Soetens F, Katgerman L.Constitutive model for aluminum alloys exposed to fire conditions[J]. Metall. Mater. Trans., 2008, 39A: 778
[57] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall. Trans., 1984, 15A: 1883
[58] Prasad Y V R K. Author's reply: Dynamic materials model: Basis and principles[J]. Metall. Mater. Trans., 1996, 27A: 235
[59] Murty S V S N, Sarma M S, Rao B N. On the evaluation of efficiency parameters in processing maps[J]. Metall. Mater. Trans., 1997, 28A: 1581
[60] Bhat B V R, Mahajan Y R, Roshan H M, et al. Processing maps for hot-working of powder metallurgy 1100 Al-10 vol % SiC-particulate metal-matrix composite[J]. J. Mater. Sci., 1993, 28: 2141
[61] Bhat B V R, Mahajan Y R, Roshan H M, et al. Characteristics of superplasticity domain in the processing map for hot working of an Al alloy 2014-20vol.%Al2O3 metal matrix composite[J]. Mater. Sci. Eng., 1994, A189: 137
[62] Murty S V S N, Rao B N. Instability map for hot working of 6061 Al-10 vol% Al2O3 metal matrix composite[J]. J. Phys., 1998, 31D: 3306
[63] Kai X Z, Zhao Y T, Wang A D, et al.Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite[J]. Compos. Sci. Technol., 2015, 116: 1
[64] Xu W C, Jin X Z, Xiong W D, et al.Study on hot deformation behavior and workability of squeeze-cast 20 vol%SiCw/6061Al composites using processing map[J]. Mater. Charact., 2018, 135: 154
[65] Zhu F J, Wu H Y, Lin M C, et al.Hot workability analysis and development of a processing map for homogenized 6069 Al alloy cast ingot[J]. J. Mater. Eng. Perform., 2015, 24: 2051
[66] Kai X Z, Chen C, Sun X F, et al.Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy[J]. Mater. Des., 2016, 90: 1151
[67] Fan C H, Peng Y B, Yang H T, et al.Hot deformation behavior of Al-9.0Mg-0.5Mn-0.1Ti alloy based on processing maps[J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 289
[68] Shao J C, Xiao B L, Wang Q Z, et al.Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.%SiCp/2024Al composite[J]. Mater. Sci. Eng., 2010, A527: 7865
[69] Bhat B V R, Mahajan Y R, Roshan H M, et al. Processing map for hot working of 6061 Al-10 vol.-%Al2O3 metal matrix composite[J]. Mater. Sci. Technol., 1995, 11: 167
[70] Xiao B L, Fan J Z, Tian X F, et al.Hot deformation and processing map of 15%SiCp/2009 Al composite[J]. J. Mater. Sci., 2005, 40: 5757
[71] Wang C X, Yu F X, Zhao D Z, et al.Hot deformation and processing maps of DC cast Al-15%Si alloy[J]. Mater. Sci. Eng., 2013, A577: 73
[72] Wang K X, Zeng W D, Zhao Y Q, et al.Hot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing maps[J]. J. Mater. Sci., 2010, 45: 5883
[73] Wang S, Hou L G, Luo J R, et al.Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map[J]. J. Mater. Process. Technol., 2015, 225: 110
[74] Mokdad F, Chen D L, Liu Z Y, et al.Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite[J]. Mater. Sci. Eng., 2017, A702: 425
[75] Liu J, Cui Z S, Li C X.Analysis of metal workability by integration of FEM and 3-D processing maps[J]. J. Mater. Process. Technol., 2008, 205: 497
[76] Weertman J.Steady-state creep of crystals[J]. J. Appl. Phys., 1957, 28: 1185
[77] Mabuchi M, Iwasaki H, Higashi K, et al.Processing and superplastic properties of fine grained Si3N4/Al-Mg-Si composites[J]. Mater. Sci. Technol., 1995, 11: 1295
[78] Zhang J Q, Di H S, Wang H T, et al.Hot deformation behavior of Ti-15-3 titanium alloy: A study using processing maps, activation energy map, and Zener-Hollomon parameter map[J]. J. Mater. Sci., 2012, 47: 4000
[79] Watanabe H, Mukai T, Higashi K.Influence of temperature and grain size on threshold stress for superplastic flow in a fine-grained magnesium alloy[J]. Metall. Mater. Trans., 2008, 39A: 2351
[80] Malas J C.A thermodynamic and continuum approach to the design and control of precision forging processes [D]. Dayton, Ohio: Wright State University, 1985
[81] Gegel H L, Malas J C, Doraivelu S M, et al.Metals Handbook[M]. Chagrin Falls: ASM International, 1988: 417
[82] Alexander J M.Mapping dynamic material behaviour [A]. Modelling Hot Deformation of Steels[M]. Berlin, Heidelberg: Springer, 1989: 101
[83] Malas III J C. Methodology for design and control of thermomechanical processes [D]. Ann Arbor: Ohio University, 1991
[84] Murty S V S N, Rao B N, Kashyap B P. Instability criteria for hot deformation of materials[J]. Int. Mater. Rev., 2000, 45: 15
[85] Cavaliere P, Cerri E, Leo P.Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite[J]. Compos. Sci. Technol., 2004, 64: 1287
[86] Gholinia A, Humphreys F J, Prangnell P B.Production of ultra-fine grain microstructures in Al-Mg alloys by coventional rolling[J]. Acta Mater., 2002, 50: 4461
[87] Exell S F, Warrington D H.Sub-grain boundary migration in aluminium[J]. Philos. Mag., 1972, 26A: 1121
[88] Huang Y, Humphreys F J, Brough I.The application of a hot deformation SEM stage, backscattered electron imaging and EBSD to the study of thermomechanical processing[J]. J. Microsc., 2002, 208: 18
[89] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Amsterdam: Elsevier, 2004: 169
[90] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2007, A456: 52
[91] Al-Samman T, Gottstein G.Dynamic recrystallization during high temperature deformation of magnesium[J]. Mater. Sci. Eng., 2008, A490: 411
[92] Ponge D, Gottstein G.Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior[J]. Acta Mater., 1998, 46: 69
[93] Marandi A, Zarei-Hanzaki R, Zarei-Hanzaki A, et al.Dynamic recrystallization behavior of new transformation-twinning induced plasticity steel[J]. Mater. Sci. Eng., 2014, A607: 397
[94] Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Mater. Sci. Eng., 2016, A678: 137
[95] Galiyev A, Kaibyshev R, Gottstein G.Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Mater., 2001, 49: 1199
[96] Drury M R, Humphreys F J.The development of microstructure in Al-5% Mg during high temperature deformation[J]. Acta Metall., 1986, 34: 2259
[97] Cavaliere P, Evangelista E.Isothermal forging of metal matrix composites: Recrystallization behaviour by means of deformation efficiency[J]. Compos. Sci. Technol., 2006, 66: 357
[98] Hu H E, Zhen L, Zhang B Y, et al.Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery[J]. Mater. Charact., 2008, 59: 1185
[99] Lee J W, Son K T, Jung T K, et al.Continuous dynamic recrystallization behavior and kinetics of Al-Mg-Si alloy modified with CaO-added Mg[J]. Mater. Sci. Eng., 2016, A673: 648
[100] Humphreys F J, Miller W S, Djazeb M R.Microstructural deve-lopment during thermomechanical processing of particulate metal-matrix composites[J]. Mater. Sci. Technol., 1990, 6: 1157
[101] Humphreys F J.The thermomechanical processing of Al-SiC particulate composites[J]. Mater. Sci. Eng., 1991, A135: 267
[102] Xia X X, Sakaris P, McQueen H J. Hot deformation, dynamic recovery, and recrystallisation behaviour of aluminium 6061-SiCp composite[J]. Mater. Sci. Technol., 1994, 10: 487
[103] Ashby M F.The deformation of plastically non-homogeneous materials[J]. Philos. Mag., 1970, 21A: 399
[104] Humphreys F J.The nucleation of recrystallization at second phase particles in deformed aluminium[J]. Acta Metall., 1977, 25: 1323
[105] Clyne T W, Withers P J.An Introduction to Metal Matrix Composites [M]. Cambridge: Cambridge University Press, 1993: 73
[106] Ceschini L, Minak G, Morri A.Forging of the AA2618/20 vol.% Al2O3p composite: Effects on microstructure and tensile properties[J]. Compos. Sci. Technol., 2009, 69: 1783
[107] Xu H, Palmiere E J.Particulate refinement and redistribution during the axisymmetric compression of an Al/SiCp metal matrix composite[J]. Composites, 1999, 30A: 203
[108] Seo Y H, Kang C G.Effects of hot extrusion through a curved die on the mechanical properties of SiCp/Al composites fabricated by melt-stirring[J]. Compos. Sci. Technol., 1999, 59: 643
[109] Hanada K, Murakoshi Y, Negishi H, et al.Microstructures and mechanical properties of Al-Li/SiCp composite produced by extrusion processing[J]. J. Mater. Process. Technol., 1997, 63: 405
[110] Essa Y E S, Fernández-Sáez J, Pérez-Castellanos J L. Some aspects of damage and failure mechanisms at high strain-rate and elevated temperatures of particulate magnesium matrix composites[J]. Composites, 2003, 34B: 551
[111] Yuan L, Shi W C, Shivpuri R, et al.Increased hot forgeability of 2024Al/Al18B4O33w whisker composites at high strain rates[J]. J. Mater. Process. Technol., 2017, 243: 456
[112] Zhao P T, Wang L D, Du Z M, et al.Low temperature extrusion of 6061 aluminum matrix composite reinforced with SnO2-coated Al18B4O33 whisker[J]. Composites, 2012, 43A: 183
[113] Borrego A, Fernández R, del Carmen Cristina M, et al. Influence of extrusion temperature on the microstructure and the texture of 6061Al-15 vol.% SiCw PM composites[J]. Compos. Sci. Technol., 2002, 62: 731
[114] Shi W C, Yuan L, Xu F C, et al.Refining whisker size of 2024Al/Al18B4O33w composite through extrusion and its effects on the material's micro-structures and mechanical properties[J]. Mater. Charact., 2018, 138: 98
[115] Hong S H, Chung K H, Lee C H.Effects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124Al composites[J]. Mater. Sci. Eng., 1996, A206: 225
[116] Choi H, Shin J, Min B, et al.Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites[J]. J. Mater. Res., 2011, 24: 2610
[117] Liu Z Y, Xiao B L, Wang W G, et al.Effect of carbon nanotube orientation on mechanical properties and thermal expansion coefficient of carbon nanotube-reinforced aluminum matrix composites[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 901
[118] Mokdad F, Chen D L, Liu Z Y, et al.Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite[J]. Carbon, 2016, 104: 64
[119] Kwon H, Estili M, Takagi K, et al.Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47: 570
[1] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[2] Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites[J]. 金属学报, 2019, 55(6): 683-691.
[3] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[4] MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2019, 55(10): 1319-1328.
[5] Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 109-125.
[6] Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites[J]. 金属学报, 2019, 55(1): 33-44.
[7] Tongxiang FAN, Yue LIU, Kunming YANG, Jian SONG, Di ZHANG. Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 16-32.
[8] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[9] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[10] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[11] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[12] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[13] Yanqiu WANG,Kun WU,Fuhui WANG. EFFECTS OF SECOND PHASES ON MICROARC OXIDATION PROCESS OF MAGNESIUM BASE MATERIALS[J]. 金属学报, 2016, 52(6): 689-697.
[14] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[15] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
No Suggested Reading articles found!