Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (3): 237-241    DOI:
Current Issue | Archive | Adv Search |
MICROSTRVCTURE AND SOLIDIFICATION BEHMIOUR OF Ni_3Al/Ni_7Hf_2 EUTECTIC ALLOY
MA Shuwei; ZHENG Yunrong(Beijing Institute of Aeronautical Materials; Beijing 100095)DU Wei; WEI Pengyi; LI Jianguo; FU Hengzhi(The State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072)
Cite this article: 

MA Shuwei; ZHENG Yunrong(Beijing Institute of Aeronautical Materials; Beijing 100095)DU Wei; WEI Pengyi; LI Jianguo; FU Hengzhi(The State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072). MICROSTRVCTURE AND SOLIDIFICATION BEHMIOUR OF Ni_3Al/Ni_7Hf_2 EUTECTIC ALLOY. Acta Metall Sin, 1998, 34(3): 237-241.

Download:  PDF(2019KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Ni3Al+Ni7HfZ unidirectionally soliditied lamellar eutectic has been studied to improve the transversal ductility and interface-thermal-stability of the ordinary eutectic composites in situ. The microstructure of Ni-5.8Al-32Hf (mass fraction,%) alloy was investigated in detail by means of metallography, transmission electron microscopy (TEM) and electron probe. The solidification behaviour of Ni3Al+Ni7Hf2 eutectic alloy was investigated at different temperature gradient (G) and solidilication rate (R). The results show that Ni-5.8Al-32Hf alloy with Ni3Al+Ni7Hf2 eutectic structure is considered to be the proper compositon. Some brittle β-NiAl phase in the alloy can be avoided by decreasing soliditied rate. Melting range of the alloy above mentioned composition is 41℃ determined by DTA. The critical value of G/R for NisAl+Ni7Hf2 eutectic is 5×105 ℃·s/cm2, and the lamellar Ni3Al+Ni7Hf2 eutectic aligned parallel to the direction of solidilication was obtained under R=5μm/s and G=250℃/cm.
Key words:  unidirectionally solidilication      in situ composite      Ni3Al/Ni7Hf2 eutectic      microstructure     
Received:  18 March 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I3/237

1Menzies R G.In:Duhl D N ed., Superalloys 1998,6th Int Symp on Superalloys, Champion,Pennsylvania,1988,Warrendale,PA:Metall Soc,1988:355
2Bibring H,Khan T,Rabinovith M,Stohr J.In:Kear B H ed., Superalloys Metallurgy and Manufacture,3rd Int Symp, Champion,Pennsylvania,1976,Claiter's Publishing Division,1976:331
3Rawlings R D, Staon A E.J Mater Sci,1975;10:505
4Ball A,Smallman R E.Acta Metall ,1966;14:1517
5Nash P,West D R F.Met Sci,198;15:347
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!