Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 873-879    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING
JIANG Qingwei1; LIU Yin1; WANG Yao1; CHAO Yuesheng1; LI Xiaowu1;2
1) Institute of Materials Physics and Chemistry; College of Sciences; Northeastern University; Shenyang 110004
2) Key Laboratory for Anisotropy and Texture of Materials; Ministry of Education; Northeastern University;  Shenyang 110004
Cite this article: 

JIANG Qingwei LIU Yin WANG Yao CHAO Yuesheng LI Xiaowu . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING. Acta Metall Sin, 2009, 45(7): 873-879.

Download:  PDF(1507KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal stability and hardness behavior of ultrafine--grained (UFG) copper produced by equal channel angular pressing (ECAP) under the condition of annealing were studied by differential scanning calorimeter (DSC) and micro--hardness tests, and the microstructural changes of this material under uniaxial compression or cyclic deformation at temperatures ranging from room temperature to 300 ℃ were examined by electron channeling contrast (ECC) technique in scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). It was found that under annealing even at a certain temperature below recrystallization temperature, UFG copper would exhibit a structural evolution, i.e., recrystallization and grain coarsening, the process of which may happen gradually at a low developing rate, so that the DSC response curve as a functional of annealing time cannot detect such a process. The grain coarsening behavior of UFG copper under high--temperature compression is related to the strain rate, i.e., the higher the strain rate, more remarkable the localization of grain coarsening becomes; the lower the strain rate, many more grains become coarsened integrally. Comparatively speaking, the grain coarsening induced by high--temperature cyclic deformation takes place more notably and uniformly, and some typical dislocation arrangements, like dislocation walls and dislocation cells etc., can be observed in some coarsened grains. Also, the inhomogeneity of grain coarsening under high--temperature deformation was quantitatively discussed in terms of a ratio V of maximum grain size (Dmax) to average grain size (Daver), which is available for the coarsened grains.

Key words:  UFG copper      cyclic deformation      uniaxial compression      temperature      microstructure      grain coarsening     
Received:  24 September 2009     
ZTFLH: 

TG113.25

 
  TG111.7

 
Fund: 

Supported by National Natural Science Foundation of China (No.50671023) and the Program for New Century Excellent Talents in University, Ministry of Education (No.NCET--07--0162)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/873

[1] Segal V M. Mater Sci Eng, 1995; A197: 157
[2] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317
[3] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[4] Vinogradov A, Kaneko Y, Kitagawa K, Hashimato S, Stolyarov Y, Valiev R. Scr Mater, 1997; 36: 1345
[5] Agnew S R, Weertman J R. Mater Sci Eng, 1998; A244: 145
[6] Wu S D, Wang Z G, Jiang C B, Li G Y. Philos Mag Lett, 2002; 82: 559
[7] Wu S D,Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[8] Vinogradov A Y, Stolyarov V V, Hashimoto S, Valiev R Z. Mater Sci Eng, 2001; A318: 163
[9] Mughrabi H, H¨oppel H W, Kautz M. Scr Mater, 2004; 51: 807
[10] Molodova X, Gottstein G, Winning M, Hellmig R J. Mater Sci Eng, 2007; A460–461: 204
[11] Li X W, Umakoshi Y, Wu S D, Wang Z G, Alexandrov I V, Valiev R Z. Phys Stat Sol, 2004; A201: 119
[12] Li X W, Wu S D, Wu Y, Yasuda H Y, Umakoushi Y. Adv Eng Mater, 2005; 7: 829
[13] Furukawa M, Iwahashi Y, Hotita Z, Nemoto M, Langdon T G. Mater Sci Eng, 1998; A257: 328
[14] Amouyal Y, Divinski S, Klinger L, Rabkin E. Acta Mater, 2008; 56: 5500
[15] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffus Forum, 2001; 188–190: 153
[16] Mughrabi H, Wang R. In: Hansen N, Horsewell A, Leffers T, Lilholt H eds., Proc 2nd Risφ Int Symp on Metallurgy and Materials Science, Roskilde: Risφ National Laboratory, 1981: 87
[17] Zhang J S. High–Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 29
(张俊善著. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 29)

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!