Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 880-886    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF GRAIN SIZE ON ULTRA--HIGH--CYCLE FATIGUE PROPERTIES OF 42CrMoVNb STEEL
ZHANG Yongjian1;2 HUI Weijun2 XIANG Jinzhong1 DONG Han2 WENG Yuqing2;3
1) School of Physical Science and Technology; Yunnan University; Kunming 650091
2) National Engineering Research Center of Advanced Steel Technology; Central Iron and Steel Research Institute; Beijing 100081
3) The Chinese Society for Metals; Beijing 100711
Cite this article: 

ZHANG Yongjian HUI Weijun XIANG Jinzhong DONG Han WENG Yuqing . EFFECT OF GRAIN SIZE ON ULTRA--HIGH--CYCLE FATIGUE PROPERTIES OF 42CrMoVNb STEEL. Acta Metall Sin, 2009, 45(7): 880-886.

Download:  PDF(1257KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For low and medium strength steels, grain size has significant effects on their fatigue properties, whereas non--metallic inclusion has no or little effect. In previous work, the effects of grain size on high--cycle fatigue fracture behaviors of 42CrMoVNb high strength steel were studied and illustrated that grain refining has a complicated influence on its fatigue properties. In this paper, the ultra--high--cycle fatigue properties of 42CrMoVNb high strength steel with three kinds of prior austenite grain sizes produced by different heat treatment procedures were studied. Experimental results show that both fatigue strength and fatigue strength ratio don't increase monotonically with the decrease of gain size, and fairly better fatigue properties could be obtained at a medium grain size of 15 μm. SEM observations of fatigue fracture surface reveal that most of fatigue cracks initiated from inclusions and a granular bright facet (GBF) was found in the vicinity around inclusion at cycles beyond about 1×106. Further investigation shows that the stress intensity factor range at crack initiation site of inclusion ΔKinc trends to decrease gradually with increasing the fatigue life Nf, while the stress intensity factor range at GBF boundary ΔKGBF keeps almost constant with varying Nf. ΔKGBF of coarse grain size is higher than that of fine grain size. It could conclude that the effect of grain size on ultra--high--cycle fatigue properties is rather complicated and an appropriate size of prior austenite might be existed.

Key words:  42CrMoVNb high strength steel      grain size      ultra--high--cycle fatigue      fatigue crack initiation site      inclusion     
Received:  02 December 2008     
ZTFLH: 

TG111.8

 
  TG142

 
Fund: 

Supported by National Basic Research Program of China (No.2004CB619104)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/880

[1] Weng Y Q. Ultra–Fine Steel–Strengthening Theory of Microstructure of Steel and Control Technology. Beijing: Metallurgical Industry Press, 2003: 9
(翁宇庆. 超细晶钢---钢的组织强化理论与控制技术. 北京: 冶金工业出版社, 2003: 9)

[2] Burke J J, Weiss V, translated by Wang Y W, Zhang Y C. Ultrafine–Grain Metals. Beijing: National Defense Industry Press, 1982: 214
(Burke J J, Weiss V著, 王燕文, 张勇昌译. 超细晶粒金属. 北京: 国防工业出版社, 1982: 214)

[3] Kage M, Miller K J, Smith R A. Fatigue Fract Eng Mater Struct, 1992; 15: 763
[4] Nie Y H, Hui W J, Fu W T, Weng Y Q, Dong H. Acta Metall Sin, 2007; 43: 1031
(聂义宏, 惠卫军, 傅万堂, 翁宇庆, 董瀚. 金属学报, 2007; 43: 1031)

[5] Zhang J M, Li S X, Yang Z G, Li G Y, Hui W J,Weng Y Q. Int J of Fatigue, 2007; 29: 765
[6] Zhang J M, Yang Z G, Li S X, Li G Y, Hui W J, Weng Y Q. Acta Metall Sin, 2006; 42: 259
(张继明, 杨振国, 李守新, 李广义, 惠卫军, 翁宇庆. 金属学报, 2006; 42: 259)

[7] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159
[8] Murakami Y, Yokoyama N, Nagata J. Fatigue Fract Eng Mater Struct, 2002; 25: 735
[9] Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 667
[10] Wang X S, Liang F, Zeng Y P, Xie X S. Acta Metall Sin, 2005; 41: 1272
(王习术, 梁锋, 曾燕屏, 谢锡善. 金属学报, 2005; 41: 1272)

[11] Chapetti M D, Miyata H, Tagawa T, Miyata T, Fujioka M. Int J Fatigue, 2005; 27: 235
[12] Kim H K Choi M II, Chung C S, Dong H S. Mater Sci Eng, 2003; A340: 243
[13] Nomura I, Iwama N. Tetsu Hagan´e, 1998; 84: 31
(野村一卫, 岩间直树. 铁と钢, 1998; 84: 31)

[14] Masounave J, Bailon J P. Scr Metall, 1976; 10: 165
[15] Yang Z G, Zhang J M, Li S X, Chu Z M, Hui W J, Weng Y Q. Acta Metall Sin, 2004; 40: 367
(杨振国, 张继明, 李守新, 褚作明, 惠卫军, 翁宇庆. 金属学报, 2004; 40: 367)

[16] Hui W J, Dong H, Wang M Q, Chen S L, Weng Y Q. J Met Heat Treat, 2002; 27(3): 14
(惠卫军, 董瀚, 王毛球, 陈思联, 翁宇庆. 金属热处理, 2002; 27(3): 14)

[17] Hui W J, Nie Y H, Dong H, Weng Y Q, Wang C X. J Mater Sci Technol, 2008; 24: 787
[18] Murakami Y, Kodama S, Konuma S. Trans JSME, 1988; 54A: 688
(村上敬宜, 見玉昭太郎, 小沼静代. 日本机械学会论文集, 1988; 54A: 688)

[19] Zhao H M, Hui W J, Nie Y H, Weng Y Q, Dong H. Chin J Mater Res, 2008; 22: 526
(赵海民, 惠卫军, 聂义宏, 翁宇庆, 董 瀚. 材料研究学报, 2008; 22: 526)

[20] Ochi Y, Matsumura T, Masaki K, Yoshida S. Fatigue Fract Eng Mater Struct, 2002; 25: 823
[21] Sakai T, Sato Y, Oguma. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[22] Hong Y S, Fang B. Adv Mech, 1993; 23: 468
(洪友士, 方 飚. 力学进展, 1993; 23: 468)

[23] Wang Q Y, Berard J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[24] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 1999; 22: 581
[25] Hui W J, Dong H, Weng Y Q, Shi J, Nie Y H, Chu Z M, Chen Y B. Acta Metall Sin, 2004; 40: 561
(惠卫军, 董瀚, 翁宇庆, 时 \ \ 捷, 聂义宏, 褚作明, 陈蕴博. 金属学报, 2004; 40: 561)

[26] Yu D G, Tan Y X. Microstructure and Strengthening of Steel–Relationship of Microstructure and Strength and Toughness. Shanghai: Shanghai Scientific and Technical Press, 1983: 290
(俞德刚, 谈育煦编著. 钢的组织强度学---组织与强韧性. 上海: 上海科学技术出版社, 1983: 290)

[27] Kuhlmann-Wilsdorf D, Thomason P F. Acta Metall, 1982; 30: 1243

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[6] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[8] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[10] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[11] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[12] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[13] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[14] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[15] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
No Suggested Reading articles found!