Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (6): 681-685     DOI:
Research Articles Current Issue | Archive | Adv Search |
INVESTIGATION ON PHASE TRANSFORMATION OF ZG06Cr13Ni4Mo IN TEMPERING PROCESS WITH LOW HEATING RATE
;;;
中国科学院金属研究所
Cite this article: 

;. INVESTIGATION ON PHASE TRANSFORMATION OF ZG06Cr13Ni4Mo IN TEMPERING PROCESS WITH LOW HEATING RATE. Acta Metall Sin, 2008, 44(6): 681-685 .

Download:  PDF(898KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to clarify martensite to austenite phase transformation mechanism of ZG06Cr13Ni4Mo during tempering between As and Af with low heating rate of 0.05℃/s, a systematic study by dilatometer, XRD, TEM and EDX was carried out. The experimental results indicate that the reversed austenite generated during tempering is rich in Ni and does not have high density dislocation, which demonstrate the martensite to austenite phase transformation with low heating rate proceeds by diffusion. The reversed austenite generated over 600℃ will partially transform to martensite during subsequent cooling. One-stage tempering can get the maximal amount of reversed austenite at 620℃. Two-stage tempering system 620℃~660℃ + 600℃ can dramatically increase the amount of reversed austenite, because the new martensite transformed from unstable reversed austenite at first-stage tempering at 620℃~660℃ provides dispersive nucleation sites for the reversed austenite in the second-stage tempering at 600℃.
Key words:  ZG06Cr13Ni4Mo      reversed austenite      mechanism of phase transformation      tempering      
Received:  05 November 2007     
ZTFLH:  TG142.24  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I6/681

[1]Friis W L,Noren T M I.US Pat 3378367,1968
[2]Bilmes P D,Solari M,Llorente C L.Mater Charact,2001; 46:285
[3]Cesnouin C,Hazarabedian A, Bruzzoni P,Ovejero-Garcta J,Blimps P,Llorente C.Corros Sci,2004;46:1633
[4]Bilmes P,Llorente C,Ipifia J P.J Mater Eng Perform, 2000;9:609
[5]Iwabuchi Y.JSME Int J,2003;46A:441
[6]Geng C W.Phys Exam Test,1992;59:8 (耿承伟.物理测试,1992;59:8)
[7]Larson J A,Fisher R.AFS Trans,1979;63:113
[8]Hubackova J,Cihal V,Mazanec K. J Mater Technol,1984; 15:411
[9]Zhang Y.Acta Me,all Sin,1982;18:395 (张一.金属学报,1982;18:395)
[10]Kapoor R,Kumar L,Batra I S.Mater Sci Eng,2003; A352:318
[11]Leem D S,Lee Y D,Jun J H,Choi C S.Scr Mater,2001; 45:767
[1] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[2] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[3] WANG Zhanhua, HUI Weijun, XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. 金属学报, 2020, 56(11): 1441-1451.
[4] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[5] Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel[J]. 金属学报, 2018, 54(10): 1368-1376.
[6] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[7] Meng WANG, Zhenyu LIU, Chenggang LI. Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel[J]. 金属学报, 2017, 53(8): 947-956.
[8] Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo[J]. 金属学报, 2017, 53(6): 669-676.
[9] Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon[J]. 金属学报, 2017, 53(1): 1-9.
[10] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[11] Junjun CUI,Liqing CHEN,Haizhi LI,Weiping TONG. TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON[J]. 金属学报, 2016, 52(7): 778-786.
[12] Yutuo ZHANG,Cong LI,Pei WANG,Dianzhong LI. IN SITU SYNCHROTRON X-RAY DIFFRACTION INVESTIGATION ON TENSILE PROPERTIES OF 9Ni STEEL[J]. 金属学报, 2016, 52(4): 403-409.
[13] Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL[J]. 金属学报, 2015, 51(5): 553-560.
[14] Shenghua ZHANG,Pei WANG,Dianzhong LI,Yiyi LI. INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION[J]. 金属学报, 2015, 51(11): 1306-1314.
[15] ZHANG Ke, YONG Qilong, SUN Xinjun, LI Zhaodong, ZHAO Peilin, CHEN Shoudong. EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED DIRECTLY QUENCHED HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(8): 913-920.
No Suggested Reading articles found!