Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 913-920    DOI: 10.11900/0412.1961.2013.00760
Current Issue | Archive | Adv Search |
EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED DIRECTLY QUENCHED HIGH STRENGTH STEEL
ZHANG Ke1,2, YONG Qilong2(), SUN Xinjun2, LI Zhaodong2, ZHAO Peilin3, CHEN Shoudong4
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
3 R&D Center, Laiwu Iron and Steel Group Co Ltd, Laiwu 271104
4 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

ZHANG Ke, YONG Qilong, SUN Xinjun, LI Zhaodong, ZHAO Peilin, CHEN Shoudong. EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED DIRECTLY QUENCHED HIGH STRENGTH STEEL. Acta Metall Sin, 2014, 50(8): 913-920.

Download:  HTML  PDF(4485KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Over the past years, Ti microalloying technique has not been developed sufficiently compared to Nb and V, due to its special metallurgy characteristics. Higher chemical activity of Ti results in larger inclusions when Ti combines with O, N and S. In addition, higher temperature sensitivity of TiC precipitation leads to the instability of steel strips. Owning to the above reasons, the conventional high strength steels with the microstructure of martensite, bainite or the composite of the two were microalloyed with (0.01%~0.03%)Ti (mass fraction) for austenite grain refinement during soaking. The addition of high Ti (>0.1%) in microalloyed high strength martensitic or bainitic steels were rarely touched upon. The effects of tempering temperature on the microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel were investigated by TEM, SEM and physical-chemical phase analysis. The results show that with the increase of tempering temperature, the tensile curve has an obvious turning point. The tensile strength gradually decreases first and then increases, while the yield strength increases slowly. At tempering temperature 600 ℃, the experimental steel shows the best mechanical properties with tensile strength at 1043 MPa, yield strength at 1020 MPa and the elongation of 16%, while the Charpy impact energy is 67.7 J at -40 ℃. The main reason is that the amount of nanometer precipitates reaches the maximum, their distributions are also relatively uniform and the size is significantly small. The solid solution strengthening and precipitation strengthening increment of the experiment steel tempering at 600 ℃ were about 149.82 and 171.72 MPa, respectively.

Key words:  high Ti microalloyed steel      tempering temperature      impact energy      ductility      precipitate     
Received:  24 November 2013     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00760     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/913

Fig.1  Schematic of hot rolling and heat treatment of experimental steel
Fig.2  Effects of tempering temperature on tensile strength (σb), yield strength (σs), elongation (δ) (a) and impact energy (αk) (b) of the experimental steel
Fig.3  SEM images of tested steels under processing conditions of as-rolled (a) and tempering at 300 ℃ (b), 500 ℃ (c) and 600 ℃ (d)
Fig.4  TEM images of tested steel tempering at 300 ℃ (a), 500 ℃ (b) and 600 ℃ (c)
Fig.5  XRD spectra of precipitates in tested steel tempering at 500 and 600 ℃
Temperature MC M3C MC
Ti* Nb Mo C* S Fe Mn Cr Mo C* S
500 0.071 0.035 0.024 0.026 0.156 0.619 0.066 0.020 0.010 0.051 0.766 (Ti0.70Nb0.18Mo0.12)C
600 0.085 0.040 0.048 0.033 0.206 0.425 0.048 0.015 0.021 0.036 0.545 (Ti0.66Nb0.16Mo0.18)C
Table 1  Quantitative analysis results of precipitates in tested steel tempering at 500 and 600 ℃
Fig.6  TEM image of MC precipitates with particle sizes smaller than 10 nm tempering at 600 ℃ (a) and the corresponding EDS analysis (b)
Fig.7  Size distribution of MC particles in tested steel tempering at 500 and 600 ℃
Fig.8  Distribution of MC particles in tested steel tempering at 500 ℃ (a) and 600 ℃ (b)
Particle size
nm
Mass fraction
%
Volume fraction
%
Strength increment / MPa
Eq. (4) Eq. (5)
1~5 20.4 0.000543 150.79 162.12
5~10 9.3 0.000247 54.55 61.19
10~18 17.8 0.000473 49.10 55.74
18~36 3.2 0.000085 12.83 14.69
36~60 3.2 0.000085 8.21 9.45
Table 2  Calculated results of precipitation hardening increments tempering at 600 ℃
[1] Yong Q L,Ma M T,Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 65
(雍岐龙,马鸣图,吴宝榕. 微合金钢—物理和力学冶金. 北京: 机械工业出版社, 1989: 65)
[2] Qian Y J, Yu W, Wu H B, Yang Y H. J Univ Sci Technol Beijing, 2010; 32: 509
(钱亚军, 余 伟, 武会宾, 杨跃辉. 北京科技大学学报, 2010; 32: 509)
[3] Lu F, Kang J, Wang C, Wang Z D, Wang G D. Iron Steel, 2012; 47: 92
(卢 峰, 康 健, 王 超, 王昭东, 王国栋. 钢铁, 2012; 47: 92)
[4] Chang W S. J Mater Sci, 2002; 37: 1973
[5] Ghosh A, Mishra B, Das S. Mater Sci Eng, 2005; A396: 320
[6] Xu L S, Yu W, Lu X J. J Univ Sci Technol Beijing, 2012; 34: 125
(徐立善, 余 伟, 卢小节. 北京科技大学学报, 2012; 34: 125)
[7] Han Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2011; A530: 643
[8] Xu L, Shi J, Cao W Q, Wang M Q, Hui W J, Dong H. J Mater Sci, 2011; 46: 3653
[9] Funakawa Y, Shiozaki, Tomita K, Yamamoto T, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[10] Chen C Y, Yen H W, Kao F H, Li W C, Huang S H. Mater Sci Eng, 2009; A499: 162
[11] Park D B, Huh M Y, Shim J H, Shim J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[12] Jha G, Das S, Siaha S, Lodh A, Haldar A. Mater Sci Eng, 2013; A561: 394
[13] Kim Y W, Song S W, Seo S J, Hong S G, Lee C S. Mater Sci Eng, 2013; A565: 430
[14] Mao X P, Huo X D, Sun X J, Chai Y Z. J Mater Process Technol, 2010; 210: 1660
[15] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[16] Xu Z Y, Cao S W. Acta Metall Sin, 1987; 23: 477
(徐祖耀, 曹四维. 金属学报, 1987; 23: 477)
[17] Gtossmann M A. Trans AIME, 1946; 167: 39
[18] Klingler L J, Barnrtt W J, Frohmberg R P, Troiano A R. Trans ASM, 1954; 46: 1557
[19] Guo K X. Acta Metall Sin, 1957; 2: 303
(郭可信. 金属学报, 1957; 2: 303)
[20] Hyam E D, Nutting J. J Iron Steel Inst, 1956; 184: 148
[21] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
(刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[22] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 172
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 172)
[23] Yong Q L, Sun X J, Zheng L, Yong X, Liu Z B, Chen M X. Sci Technol Innovation Herald, 2009; (8): 2
(雍岐龙, 孙新军, 郑 磊, 雍 兮, 刘振宝, 陈明昕. 科技创新导报, 2009; (8): 2)
[24] Soto R, Saikaly W, Bano X, Issartel C, Rigaut G, Charai A. Acta Mater, 1999; 47: 3475
[25] Gladman T, Dulieu D, Mivor I D. Proceedings of Symposium on Microalloying 75, New York: Union Carbide Corp, 1976: 32
[26] Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[27] Gladman T. Mater Sci Technol, 1999; 15: 30
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[4] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[7] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[8] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[9] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[10] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[11] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[13] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[14] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[15] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
No Suggested Reading articles found!