Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 947-956    DOI: 10.11900/0412.1961.2016.00474
Orginal Article Current Issue | Archive | Adv Search |
Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel
Meng WANG, Zhenyu LIU(), Chenggang LI
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

Meng WANG, Zhenyu LIU, Chenggang LI. Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel. Acta Metall Sin, 2017, 53(8): 947-956.

Download:  HTML  PDF(1977KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the demands for liquefied ethylene gas (LEG) are rapidly increased in China. 5%Ni steel is being widely used to build LEG tanks, due to the excellent toughness, high strength and ductility of the material. Along with the continuous increase in the size of LEG tanks, higher cryogenic toughness has been required for new generation 5%Ni steel. In this work, controlled rolling (CR) has been developed in the aim of microstructure refinement for Ni-containing steels, and ultra-fast cooling (UFC) after hot rolling has been successfully applied to replace on-line direct quenching, which formed the integrated CR-UFC for 5%Ni steel. A new processing technologies, named UFC-LT treatment which consisted of CR-UFC, lamellarizing and tempering has been developed for 5%Ni steel in this work. The microstructure and mechanical properties of 5%Ni steel treated by UFC-LT were investigated, as well as quenching and tempering (QT), quenching, lamellarizing and tempering (QLT) treatments. The results show that the microstructure of 5%Ni steel treated by UFC-LT treatment consisted of tempered martensite, intercritical ferrite and about 5.83% reversed austenite. The reversed austenite has two types of morphologies: one type is acicular reversed austenite which forms along the lath boundaries; another type is block reversed austenite which mainly forms at prior austenite grain boundaries. An optimum combination of strength and toughness were obtained by UFC-LT treatment (ultimate tensile strength is 608 MPa, yield strength is 491 MPa, elongation is 34%, Charpy impact energy at -196 ℃ is 185 J). The ductile-brittle transition temperature of 5%Ni steel treated by QT and UFC-LT heat treatments were -152 ℃ and lower than -196 ℃, respectively. The superior cryogenic toughness compared to QT treatment contributed to the dissolution of cementite, high percentage of large angle grain boundaries and the formation of 5.83% reversed austenite.

Key words:  5%Ni steel      ultra-fast cooling      reversed austenite      cryogenic toughness     
Received:  24 October 2016     
ZTFLH:  TG162.83  
Fund: Supported by Fundamental Research Funds for the Central Universities (Nos.N120807001 and N110607006)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00474     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/947

Fig.1  Schematics of processing technologies of 5%Ni steel (AC—air cooling, WQ—water quenching)

(a) quenching+tempering (QT) (b) quenching+lamellarizing+tempering (QLT) (c) control rolling+ultra-fast cooling+lamellarizing+tempering (UFC-LT)

Fig.2  OM images of 5%Ni steel treated by different hot rolling processes

(a) conventional hot rolling (b) control rolling+UFC

Fig.3  SEM images of 5%Ni steel after different heat treatments

(a) QT (b) QLT (c) UFC-LT

Fig.4  Graphs of grain boundaries (a~c) and combined band contrast and fcc phases (d~f) of 5%Ni steel after QT (a, d), QLT (b, e) and UFC-LT (c, f) treatments (Blue lines and black lines in Figs.4a~c denote the grain boundaries that below 15° and higher than 15°, respectively; red color in Figs.4d~f denotes bcc phase)
Fig.5  Bright field (a~c, e) and dark field (d, f) TEM images and corresponding SAED pattern (insets) of 5%Ni steel after QT (a, b), QLT (c, d) and UFC-LT (e, f) treatments
Heat treatment Volume fraction / % Grain size / μm Mass fraction / %
C Mn Ni
QT 1.93 0.135 0.61 1.75 7.93
QLT 6.98 0.177 0.71 2.11 9.72
UFC-LT 5.83 0.162 0.73 2.19 9.56
Table 1  Volume fractions, sizes and compositions (C, Mn, Ni) of reversed austenite in 5%Ni steel after different heat treatments
Heat treatment RP0.2 / MPa Rm / MPa RP0.2/Rm A / %
QT 529 613 0.86 27
QLT 462 583 0.79 35
UFC-LT 491 608 0.81 34
Table 2  Mechanical properties of 5%Ni steel after different heat treatments
Fig.6  Variations of Charpy impact energy with test temperature for 5%Ni steel after different heat treatments
Fig.7  SEM images of fracture morphologies in 5%Ni steel after QT (a), QLT (b) and UFC-LT (c) treatments
Fig.8  Load- displacement curves (a) and average impact energy (b) of 5%Ni steel after different heat treatments at -196 ℃
Fig.9  SEM images of the cross-sectioned area beneath the impact fracture surface of 5%Ni steel tested at -196 ℃ after QT (a, b), QLT (c) and UFC-LT (d) treatments
[1] Chen S H, Zhao M J, Li X Y, et al.Compression stability of reversed austenite in 9Ni steel[J]. J. Mater. Sci. Technol., 2012, 28: 558
[2] Yang Y H, Cai Q W, Tang D, et al.Precipitation and stability of reversed austenite in 9Ni steel[J]. Int. J. Miner. Metall. Mater., 2010, 17: 587
[3] Strife J R, Passoja D E.The effect of heat treatment on microstructure and cryogenic fracture properties in 5Ni and 9Ni steel[J]. Metall. Trans., 1980, 11A: 1341
[4] Zhao X Q, Pan T, Wang Q F, et al.Effect of tempering temperature on microstructure and mechanical properties of steel containing Ni of 9%[J]. J. Iron Steel Res. Int., 2011, 18: 47
[5] Fultz B, Kim J I, Kim Y H, et al.The stability of precipitated austenite and the toughness of 9Ni steel[J]. Metall. Trans., 1985, 16A: 2237
[6] Syn C K, Morris J W, Jin S.Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement[J]. Metall. Trans., 1976, 7A: 1827
[7] Lei M, Guo Y Y.Formation of precipitated austenite in 9%Ni steel and its permannce at cryogenic temperature[J]. Acta Metall. Sin.(Engl. Lett.), 1989, 2: 244
[8] Kim J I, Syn C K, Morris J W.Microstructural sources of toughness in QLT-treated 5.5Ni cryogenic steel[J]. Metall. Trans., 1983, 14A: 93
[9] Wu S J, Sun G J, Ma Q S, et al.Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel[J]. J. Mater. Process. Technol., 2013, 213: 120
[10] Jahazi M, Egbali B.The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel[J]. J. Mater. Process. Technol., 2000, 103: 276
[11] Bilmes P D, Solari M, Llorente C L.Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals[J]. Mater. Charact., 2001, 46: 285
[12] Tan X D, Xu Y B, Yang X L, et al.Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel[J]. Mater. Sci. Eng., 2014, A594: 149
[13] Wang X L, Wang X M, Shang C J, et al.Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness[J]. Mater. Sci. Eng., 2016, A649: 282
[14] Xie Z J, Ren Y Q, Zhou W H, et al.Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel[J]. Mater. Sci. Eng., 2014, A603: 69
[15] Yang Y H, Cai Q W, Wu H B, et al.Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two-phase region heat treatment[J]. Acta Metall. Sin., 2009, 45: 270(杨跃辉, 蔡庆伍, 武会宾等. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45: 270)
[16] Zhang Y T, Li C, Wang P, et al.In situ synchrotron X-ray diffraction investigation on tensile properties of 9Ni steel[J]. Acta Metall. Sin., 2016, 52: 403(张玉妥, 李丛, 王培等. 9Ni钢拉伸性能的同步辐射高能X射线原位研究[J]. 金属学报, 2016, 52: 403)
[17] Xie Z J, Shang C J, Zhou W H, et al.Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel[J]. Acta Metall. Sin., 2016, 52: 224(谢振家, 尚成嘉, 周文浩等. 低合金多相钢中残余奥氏体对塑性和韧性的影响[J]. 金属学报, 2016, 52: 224)
[18] Zhou W H, Xie Z J, Guo H, et al.Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon low alloy steel with good ductility[J]. Acta Metall. Sin., 2015, 51: 407(周文浩, 谢振家, 郭晖等. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51: 407)
[19] Lan L Y, Qiu C L, Zhao D W, et al.Microstructural characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel[J]. Acta Metall. Sin., 2011, 47: 1046(兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J]. 金属学报, 2011, 47: 1046)
[20] Hashemi S H. Apportion of Charpy energy in API 5L grade X70 pipeline steel [J]. Int. J. Press. Vess. Pip., 2008, 85: 879
[21] Liu J, Yu H, Wang J, et al.Effect of tempering temperature on microstructure evolution and mechanical properties of 5%Cr steel via electro-slag casting[J]. Steel Res. Int., 2015, 86: 1082
[22] Hu J, Du L X, Liu H, et al.Structure-mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure[J]. Mater. Sci. Eng., 2015, A647: 144
[23] Hwang B, Lee C G, Kim S J.Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels[J]. Metall. Mater. Trans., 2010, 42A: 717
[24] Wang X Y, Pan T, Wang H, et al.Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel[J]. Acta Metall. Sin., 2012, 48: 401(王小勇, 潘涛, 王华等. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究[J]. 金属学报, 2012, 48: 401)
[25] Pan T, Zhu J, Su H, et al.Ni segregation and thermal stability of reversed austenite in a Fe-Ni alloy processed by QLT heat treatment[J]. Rare Met., 2015, 34: 776
[26] Hu J, Du L X, Sun G S, et al.The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel[J]. Scr. Mater., 2015, 104: 87
[27] Xie Z J, Yuan S F, Zhou W H, et al.Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel[J]. Mater. Des., 2014, 59: 193
[28] Xu Z Y, Jin J X, Rong Y H.Strengthening and toughening mechanisms of quenching-partitioning-tempering (Q-P-T) steels[J]. J. Alloys Compd., 2013, 577: S568
[29] Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering[J]. Acta Metall. Sin., 2016, 52: 385(王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385)
[30] Lai G Y, Wood W E, Clark R A, et al.The Effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel[J]. Metall. Trans., 1974, 5: 1663
[31] Kim K J, Schwartz L H.On the effects of intercritical tempering on the impact energy of Fe-9Ni-0.1C[J]. Mater. Sci. Eng., 1978, 33: 5
[32] Gao G H, Zhang H, Gui X L, et al.Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite[J]. Acta Mater., 2014, 76: 425
[33] Yan P, Liu Z D, Bao H S, et al.Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel[J]. Mater. Des., 2014, 54: 874
[1] Yutuo ZHANG,Cong LI,Pei WANG,Dianzhong LI. IN SITU SYNCHROTRON X-RAY DIFFRACTION INVESTIGATION ON TENSILE PROPERTIES OF 9Ni STEEL[J]. 金属学报, 2016, 52(4): 403-409.
[2] Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. 金属学报, 2015, 51(7): 784-790.
[3] Shenghua ZHANG,Pei WANG,Dianzhong LI,Yiyi LI. INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION[J]. 金属学报, 2015, 51(11): 1306-1314.
[4] YANG Yuehui CAI Qingwu WU Huibin WANG Hua. FORMATION OF REVERSED AUSTENITE AND ITS EFFECT ON CRYOGENIC TOUGHNESS OF 9Ni STEEL DURING TWO--PHASE REGION HEAT TREATMENT[J]. 金属学报, 2009, 45(3): 270-274.
[5] ;. INVESTIGATION ON PHASE TRANSFORMATION OF ZG06Cr13Ni4Mo IN TEMPERING PROCESS WITH LOW HEATING RATE[J]. 金属学报, 2008, 44(6): 681-685 .
[6] YIN Zhongda; LI Hiaodong;LI Haibin; LAI Zhonghong(Harbin Instilute of Technology; Harbin 150001)(Manuscript received 94-01-13; in revised form 94-06-06). AGING MECHANISM OF 18Ni MARAGING STEEL[J]. 金属学报, 1995, 31(1): 7-13.
[7] LEI Ming;GUO Yunyi Institute of Metal Research; Academic Sinica; Shenyang. FORMATION OF PRECIPITATED AUSTENITE IN 9% Ni STEEL AND ITS FUNCTION AT CRYOGENIC TEMPERATURE[J]. 金属学报, 1989, 25(1): 13-17.
No Suggested Reading articles found!