Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (10): 1368-1376    DOI: 10.11900/0412.1961.2018.00119
Current Issue | Archive | Adv Search |
Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel
Xiaolin LI1(), Yang CUI1, Baoliang XIAO1, Dawei ZHANG1, Zhao JIN2, Zheng CHENG2
1 Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Research Institute of Technology, Shougang Group Co. Ltd., Beijing 100043, China;
2 Shougang Jingtang Steel Company, Tangshan 063200, China
Cite this article: 

Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel. Acta Metall Sin, 2018, 54(10): 1368-1376.

Download:  HTML  PDF(6976KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low carbon bainite steel with high strength, excellent toughness and plasticity was widely used for pipeline, engineering machinery, ocean station vessel and other fields. The light weight of structure of construction machines puts forward higher requirements for performance of steel, which promotes the development and application of low carbon microalloyed steel. A low carbon bainite steel combined with V-N microalloyed was designed for engineering machinery, to upgrade performance by microstructure control and the refinement and dispersion control of precipitates. This steel was tempered on-line with rapid heating rate after controlled rolling and accelerated cooling process. Effects of different holding time under rapid induction tempering on precipitation strengthening mechanism and mechanical property of V-N microalloyed steel were investigated by using three dimensional atom probe (3DAP), SEM and TEM. The results showed that the main microstructures of tested steel are granular bainite before tempering, and granular bainite and ferrite appears after tempering at 600 ℃. The hardness and yield strength values reached its peak at 600 ℃ tempered for 300 s, which were 330.45 HV and 815 MPa, respectively. Compared with untempered sample, the measured strengthening increment in yield strength was 173 MPa which was due to the V-rich or VN-rich clusters with 20~100 atoms distributing similar to monoatomic layer and resembled the GP zones. These small nanoclusters have strong interaction with dislocation, and compared with V(C, N) particles, V or VN clusters have better strengthening effect.

Key words:  three dimensional atom probe (3DAP)      on-line rapid induction tempering      V-N microalloyed steel      cluster strengthening     
Received:  30 March 2018     
ZTFLH:  TG142. 1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00119     OR     https://www.ams.org.cn/EN/Y2018/V54/I10/1368

Fig.1  Schematic of hot rolling process
Fig.2  Effects of holding time on the hardness and yield strength of the samples with rapid induction tempered at 600 ℃
Fig.3  SEM images of samples rapid induction tempered at 600 ℃ with different holding time (GB—granular bainite, F—ferrite, M/A—martensite/austenite)
(a) untempered (b) 50 s (c) 100 s (d) 300 s (e) 600 s (f) 1800 s
Fig.4  TEM images of precipitates in V-N microalloyed steel rapid induction tempered at 600 ℃ with different holding time (Arrows show precipitated phases)
(a) 50 s (b) 300 s (c) 600 s (d) 1800 s
Fig.5  Extraction-replica HRTEM image of the fine carbides in tested steel tempered at 600 ℃ for 300 s (a), corresponding EDS analysis of fine carbides (b), the HRTEM image of single V(C, N) precipitate (c) and inverse Fourier transforms lattice image of precipitate (d)
Fig.6  3DAP images of tested steels with rapid induction tempered at 600 ℃ for 300 s
(a) C (b) Cr (c) Mo (d) V (e) a VN cluster
(f) the cluster of corresponding 1%V (atomic fraction) iso-concentration surface
Fig.7  3DAP images of C, V and VN in cluster of samples rapid induction tempered at 600 ℃ for 300 s (a) and 600 s (b)
Fig.8  Solute concentration of the clusters and particles as a function of the radius in the tested steels rapid induction tempered at 600 ℃ for 300 s
Fig.9  The number of partitioned V atom distribution and the number density of clusters versus cluster size of samples rapid induction tempered at 600 ℃ for 300 and 600 s
[1] Gorni A A, Mei P R. Development of alternative as-rolled alloys to replace quenched and tempered steels with tensile strength in the range of 600-800 MPa [J]. J. Mater. Process. Technol., 2005, 162-163: 298
[2] Wang S C, Kao P W.The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels[J]. J. Mater. Sci., 1993, 28: 5169
[3] Gorni A A, Mei P R. Austenite transformation and age hardening of HSLA-80 and ULCB steels [J]. J. Mater. Process. Technol., 2004, 155-156: 1513
[4] He X L, Shang C J, Yang S W, et al.High Performance Low Carbon Bainite Steel-Composition, Process, Organization, Performance and Application [M]. Beijing: Metallurgical Industry Press, 2008: 234(贺信莱, 尚成嘉, 杨善武等. 高性能低碳贝氏体钢——成分、工艺、组织、性能与应用 [M]. 北京: 冶金工业出版社, 2008)
[5] Yang C F, Zhang Y Q, Zu R X.Development and Application of Vanadium Nitrogen Microalloyed Steel [M]. Beijing: Iron and Steel Research Institute Press, 2002: 23(杨才福, 张永权, 祖荣祥. 钒氮微合金化钢的开发与应用 [M]. 北京: 钢铁研究总院, 2002: 23)
[6] Hayashi K, Nagao A, Matsuda Y.550 and 610 MPa class high-strength steel plates with excellent toughness for tanks and penstocks produced using carbide morphology controlling technology[J]. JFE Tech. Rep., 2008, (11): 19
[7] Nagao A, Ito T, Obinata T.Development of YP 960 and 1100 MPa class ultra high strength steel plates with excellent toughness and high resistance to delayed fracture for construction and industrial machinery[J]. JFE Tech. Rep., 2008, (11): 13
[8] Xing S Q, Chen Z Z, Ma Y L. Formation of precipitations in ultra-low carbon microalloyed steels treated by rapid tempering [J]. Adv. Mater. Res., 2011, 146-147: 635
[9] Wu H B, Tang D, Cai Q W, et al.Effect of re-heating rate on M/A islands in high deformability pipe line steel X80[J]. Trans. Mater. Heat Treat., 2012, 33(6): 100(武会宾, 唐荻, 蔡庆伍等. 重加热速率对X80级管线钢中M/A岛的影响[J]. 材料热处理学报, 2012, 33(6): 100)
[10] Zhang J, Cai Q W, Wu H B, et al.Effect of tempering temperature on micro-structure and property of 690 MPa grade ocean engineering steel under fast heating rate[J]. Acta Metall. Sin., 2013, 49: 1549(张杰, 蔡庆伍, 武会宾等. 快速加热回火对690 MPa级海洋工程用钢组织和性能的影响[J]. 金属学报, 2013, 49: 1549)
[11] Fang Y P, Xie Z J, Shang C J.Effect of induction tempering on carbide precipitation behavior and toughness of a 1000 MPa grade high strength low alloy steel[J]. Acta Metall. Sin., 2014, 50: 1413(房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50: 1413)
[12] Liu W Q, Zhou B X.China Material Engineering Canon [M]. Beijing: Chemical Industry Press, 2006: 1045(刘文庆, 周邦新. 中国材料工程大典 [M]. 北京: 化学工业出版社, 2006: 1045)
[13] Murayama M, Hono K.Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy[J]. Scr. Mater., 2001, 44: 701
[14] Cerezo A, Hirosawa S, Rozdilsky I, et al.Combined atomic-scale modelling and experimental studies of nucleation in the solid state[J]. Philos. Trans. Roy. Soc. Mathemat., Phys. Eng. Sci., 2003, 361: 463
[15] Pereloma E V, Shekhter A, Miller M K, et al.Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: Clustering, precipitation and hardening[J]. Acta Mater., 2004, 52: 5589
[16] Miller M K, Cerezo A, Hetherington M G, et al.Atom Probe Field Ion Microscopy [M]. Oxford: Oxford Science Publications, Clarendon Press, 1996: 13
[17] Blavette D, Deconihout B, Bostel A, et al.Tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale[J]. Rev. Sci. Instrum., 1993, 64: 2911
[18] Wu J, Zhang H H, Zhu S H, et al.Investigation of the precipitation process in micro-alloyed steel with three-dimensional atom probe[J]. Shanghai Met., 2009, 31(3): 36(吴静, 张恒华, 朱松鹤等. 微合金钢中析出相形核过程的三维原子探针研究[J]. 上海金属, 2009, 31(3): 36)
[19] Wang W, Zhu J J, Lin M D, et al.Study on the early-stage of copper-rich nano-clusters precipitation in model nuclear reactor pressure vessel steel[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 39(王伟, 朱娟娟, 林民东等. 核反应堆压力容器模拟钢中富Cu纳米团簇析出早期阶段的研究[J]. 北京科技大学学报, 2010, 32: 39)
[20] Xu G, Chu D F, Cai L L, et al.Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel[J]. Acta Metall. Sin., 2011, 47: 905(徐刚, 楚大锋, 蔡琳玲等. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47: 905)
[21] Liu Q D, Chu Y L, Wang Z M, et al.3D atom probe characterization of alloying elements partitioning in cementite of a Nb-V microalloyed steel[J]. Acta Metall. Sin., 2008, 44: 1281(刘庆冬, 褚于良, 王泽民等. Nb-V微合金钢中渗碳体周围元素分布的三维原子探针表征[J]. 金属学报, 2008, 44: 1281)
[22] Liu Q D, Deng J C, Liu W Q, et al.3D atom probe characterazation of alloy carbides in tempering martenite Ⅱ. Growth[J]. Acta Metall. Sin., 2009, 45: 1288(刘庆冬, 彭剑超, 刘文庆等. 回火马氏体中合金碳化物的3D原子探针表征Ⅱ. 长大[J]. 金属学报, 2009, 45: 1288)
[23] Yong Q L.The Second Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 175(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 175)
[24] Maugis P, Gouné M.Kinetics of vanadium carbonitride precipitation in steel: A computer model[J]. Acta Mater., 2005, 53: 3359
[25] Gladman T.Precipitation hardening in metals[J]. Mater. Sci. Technol., 1999, 15: 30
[26] Yamashita T, Okuda K, Obara T.Application of thermo-calc to the developments of high-performance steels[J]. J. Phase Equilib., 1999, 20: 231
[27] Xie K Y, Zheng T X, Cairney J M, et al.Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J]. Scr. Mater., 2012, 66: 710
[28] Karlík M, Bigot A, Jouffrey B, et al.HREM, FIM and tomographic atom probe investigation of Guinier-Preston zones in an Al-1.54 at% Cu alloy[J]. Ultramicroscopy, 2004, 98: 219
[29] Singh C V, Mateos A J, Warner D H.Atomistic simulations of dislocation-precipitate interactions emphasize importance of cross-slip[J]. Scr. Mater., 2011, 64: 398
[30] Polmear I J.Aluminium alloys-a century of age hardening[J]. Mater. Forum, 2004, 28: 1
[31] Ringer S P, Hono K, Sakurai T, et al.Cluster hardening in an aged Al-Cu-Mg alloy[J]. Scr. Mater., 1997, 36: 517
[32] Marceau R K W, Sha G, Lumley R N, et al. Evolution of Solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Mater., 2010, 58: 1795
[1] LIU Wenqing ZHU Xiaoyong ZHONG Liuming WANG Xiaojiao LIU Qingdong. STUDY ON CRITICAL TRANSITION RADIUS OF SECOND PHASE IN MICRO–ALLOYED STEEL[J]. 金属学报, 2011, 47(8): 1094-1098.
[2] CHI Chengyu DONG Jianxin LIU Wenqing XIE Xishan. 3DAP INVESTIGATION OF PRECIPITATION BEHAVIOR OF Cu-RICH PHASE IN SUPER304H HEAT RESISTANT STEEL[J]. 金属学报, 2010, 46(9): 1141-1146.
No Suggested Reading articles found!