Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (11): 1379-1387    DOI: 10.11900/0412.1961.2019.00074
Current Issue | Archive | Adv Search |
Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel
ZHANG Min(),JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei
School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
Cite this article: 

ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel. Acta Metall Sin, 2019, 55(11): 1379-1387.

Download:  HTML  PDF(13035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a low carbon martensitic precipitation hardening stainless steel, G520 steel has been widely used in heavy load and corrosion-resistant components such as compressor impeller due to its high strength with reasonable toughness, ductility and corrosion resistance. Although heat treatment usually presents a tendency to promote a improvement of mechanical properties, it may cause unpredictable changes in the microstructure and properties of high strength steel weldment, which is extremely complicated and normally very sensitive to heat. Based on this scenario, the influence of quenching and tempering on the mechanical and microstructural properties of G520 steel weld metals obtained by shielded metal arc welding (SMAW) was studied in this work. Tensile test, impact test and metallographic examination by OM, XRD, SEM and EBSD were performed for mechanical and microstructural characterization. The results indicate that, the welded joints after quenching (at 850 ℃, oil cooling) and tempering (at 520 ℃, air cooling) have better strength and toughness than the pre-weld quenching and tempering. Moreover, the quenching and tempering treatment of the weld metal, breaks down the columnar microstructure into smaller martensite sub-blocks. Meanwhile, it form a certain amount of inversion austenite at the prior austenite grain boundary and the boundary of the lath martensite. As above, the proportion of the large angle grain boundary is increased, which effectively improves the toughness of the weld metal.

Key words:  G520 stainless steel      welding-quenching and tempering      lath martensitic      high angle grain boundary     
Received:  20 March 2019     
ZTFLH:  TG457.1  
Fund: Supported by National Natural Science Foundation of China(51974243);Natural Science Foundation of Shaanxi Provincial Department(2019JZ-31);and Science and Technology Program of Xi'an, China(201805037YD15CG21(16))

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00074     OR     https://www.ams.org.cn/EN/Y2019/V55/I11/1379

MaterialCSiMnPSNiCrMoCuNb
Base metal≤0.050.3~0.60.5~0.9≤0.025≤0.026.0~7.013.0~15.00.6~0.91.3~1.50.3~0.4
Welding rod≤0.03≤0.450.4~0.7≤0.015≤0.016.2~7.512.5~14.51.0~1.3-0.2~0.4
Table 1  Chemical compositions of materials applied (mass fraction / %)
Fig.1  Schematic of welded joint (unit: mm)
Welding layerd / mmI / AU / Vv / (mm·s-1)
Obverse side 1~23.2120~13525~352.3~3.0
Reverse side 1~23.2120~13525~352.5~3.3
Reverse side 34.0155~16725~303.3~3.8
Obverse side 3~44.0155~16725~303.3~5.0
Obverse side 54.0155~16725~302.8~3.3
Reverse side 4~54.0155~16725~303.3~4.3
Table 2  Welding parameters of G520 steel plate
Fig.2  Schematics of heat treatment process (AC—air cooling, OC—oil cooling, FC—furnace cooling, Ac1—start temperature of austenite transformation)(a) quenched-tempered before welding (1#) (b) quenched-tempered after welding (2#)
Fig.3  OM images of welded joints quenched-tempered before (a, c, e) and after (b, d, f) welding (BM—base metal, HAZ—heat affected zone, WM—weld metal)(a, b) fusion line (c, d) WM (e, f) HAZ
Materialσs / MPaσb / MPaδ / %Fracture location
Quenched-tempered parent metal1069.01097.521.4-
Quenched-tempered before welding917.01070.515.0Weld metal
Quenched-tempered after welding1055.41118.016.3Weld metal
Table 3  Tensile strength of parent metal and welded joints quenched-tempered before and after welding
Fig.4  Impact toughnesses of welded joints quenched-tempered before (1#) and after (2#) welding
Fig.5  SEM images of impact fracture of weld metals (a, b) and fusion line (c, d) in welded joints quenched-tempered before (a, c) and after (b, d) welding
Fig.6  EBSD orientation imaging maps of weld metals quenched-tempered before (a) and after (b) weldingColor online
Fig.7  XRD spectra of parent metal and weld metals quenched-tempered before (1#) and after welding (2#)
Fig.8  Misorientation angle distribution figures of grain boundaries in weld metal zone of quenched-tempered before (a) and after welding (b)
[1] FanJ L, GuoX L, WuC W, et al. Influence of heat treatments on mechanical behavior of FV520B steel [J]. Exp. Tech., 2015, 39: 55
[2] ZhouQ Q, ZhaiY C. Aging process optimization for a high strength and toughness of FV520B martensitic steel [J]. Acta Metall. Sin., 2009, 45: 1249
[2] 周倩青, 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化 [J]. 金属学报, 2009, 45: 1249
[3] XuW B, ShiW, ZhangX. Microstructural transformation of martensite precipitation hardening stainless steel during aging process [J]. Trans. Mater. Heat Treat., 2013, 34(Suppl.2: 139
[3] 许文博, 石 伟, 张 欣. 马氏体型沉淀硬化不锈钢时效过程的组织转变 [J]. 材料热处理学报, 2013, 34(增刊2): 139
[4] NiuJ, DongJ M, XueJ. Precipitation-hardening and toughness of precipitation-hardening stainless steel FV520(B) [J]. Mater. Mech. Eng., 2007, 43(12): 78
[4] 牛 靖, 董俊明, 薛 锦. 沉淀硬化不锈钢FV520(B)的析出硬化及韧性 [J]. 机械工程学报, 2007, 43(12): 78
[5] ZhangM, WangW Q, WangP F, et al. Fatigue behavior and mechanism of FV520B in very high cycle regime [J]. Strength Fract. Complex., 2015, 9: 161
[6] ZhaoQ C, WangJ L, ZhangY L, et al. Fatigue behavior and fatigue life for FV520B-I at different loading frequencis [J]. Mater. Rev., 2018, 32: 2837
[6] 赵清晨, 王金龙, 张元良等. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命 [J]. 材料导报, 2018, 32: 2837
[7] XiangL H, PanJ Y, ChenS Y, et al. Experimental investigation on the stress corrosion cracking of FV520B welded joint in natural gas environment with ECP and SSRT [J]. Eng. Fract. Mech., 2018, 200: 166.
[8] XiangL H, PanJ Y, ChenS Y. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen [J]. Results Phys., 2018, 9: 463
[9] AmreiM M, MonajatiH, ThibaultD, et al. Effects of various post-weld heat treatments on austenite and carbide formation in a 13Cr4Ni steel multipass weld [J]. Metallogr. Microstruct. Anal., 2016, 5: 50
[10] GaoH, SongY Y, ZhaoM J, et al. Effects of tempering on the microstructure and mechanical property of electron beam welding joint of 9Cr2WVTa steel [J]. Acta Metall. Sin., 2014, 50: 1429
[10] 高 恒, 宋元元, 赵明久等. 回火对9Cr2WVTa钢电子束焊接接头组织和力学性能的影响 [J]. 金属学报, 2014, 50: 1429
[11] JorgeJ C F, MonteiroJ L D, GomesA J C, et al. Influence of welding procedure and PWHT on HSLA steel weld metals [J]. J. Mater. Res. Technol., 2019, 8: 561
[12] XuK C, WangH Q, GaiJ F. Draught Fan Manual [M]. 2nd Ed., Beijing: Mechanical Industry Stress, 2011: 113
[12] 续魁昌, 王洪强, 盖京方. 风机手册 [M]. 第2版,北京: 机械工业出版社, 2011: 113
[13] LiX L, WangZ D. Effect of one step Q&P process on microstructure and mechanical properties of a dual martensite steel [J]. Acta Metall. Sin., 2015, 51: 534
[13] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响 [J]. 金属学报, 2015, 51: 534
[14] AmreiM M, VerremanY, BridierF, et al. Microstructure characterization of single and multipass 13Cr4Ni steel welded joints [J]. Metallogr. Microstruct. Anal., 2015, 4: 207
[15] WangX N, ChenX M, SunQ, et al. Formation mechanism of δ-ferrite and metallurgy reaction in molten pool during press-hardened steel laser welding [J]. Mater. Lett., 2017, 206: 143
[16] HuX Q, XiaoN M, LuoX H, et al. Effects of δ-ferrite on the microstructure and mechanical properties in a tungsten-alloyed 10%Cr ultra-supercritical steel [J]. Acta Metall. Sin., 2009, 45: 553
[16] 胡小强, 肖纳敏, 罗兴宏等. 含W型10%Cr超超临界钢中δ-铁素体的微观结构及其对力学性能的影响 [J]. 金属学报, 2009, 45: 553
[17] XuB S, FangJ X, DongS Y, et al. Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding stainless FV520B steel [J]. Acta Metall. Sin., 2016, 52: 1
[17] 徐滨士, 方金祥, 董世运等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响 [J]. 金属学报, 2016, 52: 1
[18] XiaoF R. Influence of intermediate treatment on microstructure and properties of stainless steel FV520(B) [J]. Trans. Met. Heat Treat., 1999, 20(4): 35
[18] 肖福仁. 调整处理对 FV520(B)不锈钢组织与性能的影响 [J]. 金属热处理学报, 1999, 20(4): 35
[19] LiuY R, YeD, YongQ L, et al. Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel [J]. J. Iron Steel Res. Int., 2011, 18: 60
[20] CuiZ Q, QinY C. Metallography and Heat Treatment [M]. 2nd Ed., Beijing: Mechanical Industry Stress, 2007: 252
[20] 崔忠圻, 覃耀春. 金属学与热处理 [M]. 第2版,北京: 机械工业出版社, 2007: 252
[21] SongY Y, PingD H, YinF X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Sci. Eng., 2010, A527: 614
[22] ParkE S, YooD K, SungJ H, et al. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel [J]. Met. Mater. Int., 2004, 10: 521
[23] SongY Y, LiX Y, RongL J, et al. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Lett., 2010, 64: 1411
[24] XuW S, LiY, WangC X, et al. Analysis on cyclic phase transformation of maraging steel by EBSD [J]. Trans. Mater. Heat Treat., 2014, 35(10): 154
[24] 徐文帅, 厉 勇, 王春旭等. 马氏体时效钢循环相变的EBSD分析 [J]. 材料热处理学报, 2014, 35(10): 154
[25] QiaoY, ArgonA S. Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2%Si alloy: Experiments and modeling [J]. Mech. Mater., 2003, 35: 129
[26] YeliG, AugerM A, WilfordK, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Mater., 2017, 125: 38
[27] JingC N, FanJ C, WangC L, et al. Characterization and formation mechanism of the weld interface of TRIP590 steel laser welding [J]. Chin. J. Lasers, 2015, 42(4): 57
[27] 景财年, 范吉超, 王丛雷等. 激光焊接TRIP590钢焊缝微观结构及形成机理研究 [J]. 中国激光, 2015, 42(4): 57
[28] ZhangW Y. Welding Metallurgy [M]. Beijing: Mechanical Industry Stress, 1999: 127
[28] 张文钺. 焊接冶金学 [M]. 北京: 机械工业出版社, 1999: 127
[29] ZhangM, LiuM Z, ZhangM, et al. Microstructure and mechanical properties of FV520B affected by austenitizing elements Mn and Ni [J]. J. Mater. Eng., 2016, 44(3): 40
[29] 张 敏, 刘明志, 张 明等. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响 [J]. 材料工程, 2016, 44(3): 40
[30] LongS L, LiangY L, JiangY, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel [J]. Mater. Sci. Eng., 2016, A676: 38
[31] Dáz-FuentesM, Iza-MendiaA, GutiérrezI. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
[32] LiaoB, XiaoF R. Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel [J]. Trans. Mater. Heat Treat., 2009, 30(2): 57
[32] 廖 波, 肖福仁. 针状铁素体管线钢组织及强韧化机理研究 [J]. 材料热处理学报, 2009, 30(2): 57
[1] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[2] LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. 金属学报, 2011, 47(8): 1046-1054.
[3] ZHOU Yanlei XU Yang CHEN Jun LIU Zhenyu. EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL[J]. 金属学报, 2011, 47(11): 1382-1387.
[4] DENG Wei GAO Xiuhua QIN Xiaomei ZHAO Dewen DU Linxiu WANG Guodong. IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL[J]. 金属学报, 2010, 46(5): 533-540.
No Suggested Reading articles found!