Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (1): 1-9    DOI: 10.11900/0412.1961.2016.00231
Orginal Article Current Issue | Archive | Adv Search |
The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon
Yonghua RONG,Nailu CHEN()
School of Materials Science and Enigineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon. Acta Metall Sin, 2017, 53(1): 1-9.

Download:  HTML  PDF(5916KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since quenching-partitioning-tempering (Q-P-T) process was proposed in 2007, our research group have realized the enhancement of both strength and ductility of Q-P-T martensitic steels by increasing the carbon from low content to medium content range. The recent work devoted every effort to extending carbon content to high carbon range. Based on failure of our many trials, a design idea of anti-transformation induced plasticity (anti-TRIP) effect was proposed and the composition and process of high carbon low alloying martensitic steel were designed according to the idea of anti-TRIP effect so that the strength and ductility of high carbon Q-P-T martensitic steel are higher than those of medium carbon Q-P-T martensitic steel, which fulfills the desire of investigators for a century. This paper will mainly expound the background of anti-TRIP effect, the design of composition and process of high carbon Q-P-T martensitc steel as well as its microstructure, the mechanism of high strength and ductility for high carbon Q-P-T martensitic steel, and finally analyze the principle that Q-P-T process makes the enhancement of both strength and ductility by increase of the carbon content.

Key words:  quenching-partitioning-tempering (Q-P-T) process      carbon content      strength      ductility      anti-transformation induced plasticity (anti-TRIP) effect     
Received:  14 June 2016     
Fund: Supported by National Natural Science Foundation of China (No.51371117)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00231     OR     https://www.ams.org.cn/EN/Y2017/V53/I1/1

Fig.1  Comparison of mechanical properties of high carbon quenching-partitioning-tempering (Q-P-T) martensitic steel with other advanced high strength steels (AHSSs)[7] (TRIP—transformation induced plasticity, Q&P—quenching and partitioning, DP—dual phase, M—martensitic steel)
Fig.2  Engineering stress-strain curves of high carbon Q-P-T and Q&T martensitic steels (LN—liquid nitrogen)
Fig.3  Product of strength and elongation and volume fraction of retained austenite increase with rising carbon content in Q-P-T martensitic steels
Fig.4  SEM images of Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb high carbon low alloy martensite steel after different heat treatment processes[14](a) as-hot rolled sample(b) as-normalization sample(c) sample A (hot rolled+Q-P-T)(d) sample B (hot rolled+normalization+Q-P-T)
Fig.5  TEM analyses of undeformed Q-P-T sample[14]

(a) bright-field TEM image of sample A(b) dark-field TEM image of retained austenite and inserted SAED pattern of the retained austenite and martensite in sample A(c) bright-field TEM image of sample B(d) dark-field TEM image of retained austenite and inserted SAED pattern of the retained austenite and martensite in sample B(e) dark-field TEM image of sample A and inserted SAED pattern of niobium carbides(f) dark-field TEM image of sample B and inserted SAED pattern of niobium carbides

Fig.6  EBSD analyses of retained austenitein in sample A (a) and sample B (b), and grain size distribution of retained austenite (c)[14]
Fig.7  Variation of average dislocation density with strain[11](a) in martensite in Q-P-T sample or Q&T one (b) in retained austenite
Process Strain (εM2)1/2 ρM1 ρM2 ρ?M (εA2)1/2 ρA1 ρA2 ρ?A VRA
% 10-3 1014 m-2 1014 m-2 1014 m-2 10-3 1014 m-2 1014 m-2 1014 m-2 %
Q-P-T 0 2.09±0.06 5.94±0.36 4.96±0.30 5.45±0.33 1.57±0.06 13.06±0.88 7.96±0.54 10.51±0.71 28.1
3 1.95±0.04 5.76±0.16 4.80±0.20 5.28±0.18 2.03±0.11 18.51±1.21 0.65±0.73 14.58±0.97 24.5
5 1.85±0.03 4.77±0.12 3.97±0.10 4.37±0.11 2.57±0.11 25.44±1.26 14.16±0.76 19.30±1.01 20.4
8 2.11±0.04 6.34±0.16 5.28±0.14 5.81±0.15 3.24±0.14 38.10±1.28 22.70±0.76 30.40±1.02 15.9
14 2.26±0.05 6.86±0.24 5.72±0.20 6.29±0.22 3.78±0.20 53.38±2.62 31.26±1.56 42.37±2.09 12.8
19 2.46±0.04 8.22±0.17 6.84±0.15 7.53±0.16 10.9
24 2.66±0.04 10.04±0.17 8.36±0.15 9.20±0.16 10.9
28.9 2.92±0.04 10.82±0.20 9.86±0.16 10.84±0.18 8.0
Q&T 0 2.48±0.03 7.94±0.14 7.44±0.12 7.44±0.12 4.3
(LN) 3 2.61±0.06 9.56±0.28 8.12±0.24 8.84±0.26
5 2.87±0.06 11.40±0.33 9.66±0.27 10.53±0.30
8.7 3.25±0.03 14.20±0.15 12.00±0.13 13.10±0.14
Table 1  Microstructure parameters of martensite and retained austenite in Q-P-T and Q&T tensile samples at different strain stages[11]
[1] Pierman A P, Bouaziz O, Pardoen T, et al.The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
[2] Chang G L, Kim S J, Lee T H, et al.Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Mater. Sci. Eng., 2004, A371: 16
[3] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
[4] Speer J G, Edmonds D V, Rizzo F C, et al.Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219
[5] Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum., 2007, 561-565: 2283
[6] Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
[7] Wang X D, Zhong N, Rong Y H, et al.Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. J. Mater. Res., 2009, 24: 260
[8] Rashid M S.High-strength, low-alloy steels[J]. Science, 1980, 208: 862
[9] Krauss G.Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metall. Mater. Trans., 2001, 32A: 861
[10] Zhang K, Xu W Z, Guo Z H, et al.Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content[J]. Acta Metall. Sin., 2011, 47: 489
[10] (张柯, 许为宗, 郭正洪等. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47: 489)
[11] Qin S W, Liu Y, Hao Q G, et al.Ultrahigh ductility, high-carbon martensitic steel[J]. Metall. Mater. Trans., 2016, 47A: 4853
[12] Qin S W, Liu Y, Hao Q G, et al.The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metall. Mater. Trans., 2015, 46A: 4047
[13] Hao Q G, Qin S W, Liu Y, et al.Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2016, A662: 16
[14] Qin S W, Liu Y, Hao Q G, et al.High carbon microalloyed martensitic steel with ultrahigh strength-ductility[J]. Mater. Sci. Eng., 2016, A663: 151
[15] Chatterjee S, Bhadeshia H K D H. TRIP-assisted steels: Cracking of high-carbon martensite[J]. Mater. Sci. Technol., 2006, 22: 645
[16] Zhang K, Liu P, Li W, et al.High strength-ductility Nb-microalloyed low martensitic carbon steel: Novel process and mechanism[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1264
[17] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483
[17] (戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47: 1483)
[18] Sugimoto K I, Iida T, Sakaguchi J, et al.Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40: 902
[19] Chinh N Q, Horváth G, Horita Z, et al.A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain[J]. Acta Metall., 2004, 52: 3555
[20] Zackay V F, Parker E R, Fahr D, et al.The enhancement of ductility in high-strength steels[J]. ASM. Trans. Quart., 1967, 60: 252
[21] Webster D.Increasing toughness of martensitic stainless steel AFC 77 by control of retained austenite content ausforming and strain aging. ASM Trans. Quart., 1968, 61: 816
[22] Zhang K, Zhang M H, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2011, A528: 8486
[23] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641
[23] (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641)
[24] Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high strength bainitic steel[J]. Mater. Sci. Eng., 2012, A552: 288
[25] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[6] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[11] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[12] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[15] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
No Suggested Reading articles found!