Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (4): 403-409    DOI: 10.11900/0412.1961.2015.00460
Orginal Article Current Issue | Archive | Adv Search |
Yutuo ZHANG1,2,Cong LI1,2,Pei WANG2(),Dianzhong LI2
1 College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(952KB) 
Export:  BibTeX | EndNote (RIS)      

9Ni steel has been widely used in liquid natural gas tanks and pipelines because of its excellent toughness at low temperature after quenching, larmellarizing and tempering heat treatment. Recently, in the cryogenic field it is used in some forgings, which have a strict demanding on the strength of this material. In order to clarify the relationship between the strength and the reversed austenite in the 9Ni steel after different temperature tempering, a systematic investigation on the amount of reversed austenite, deformation induced phase transformation (DIPT) of reversed austenite and its influence on the mechanical properties of 9Ni steel has been carried out by dilatometer, in situ synchrotron high-energy X-ray diffraction, XRD and TEM. The experimental results indicated that the amount of reversed austenite showed a parabolic trend with increase of tempering temperature and obtained the highest value after 600 ℃ tempering. And the DIPT of reversed austenite occurred after yielding during uniaxial tension test. This phenomenon induced that the yield strength of the experimental steel decreased to a minimum value after 600 ℃ tempering, and then, the value increased with further the increase of tempering temperature. However, the tensile strength of experimental steel increased with the increase of tempering temperature and reached the maximum after 640 ℃ tempering, because almost all of the reversed austenite transforms to martensite before necking.

Key words:  9Ni steel      in situ synchrotron radiation X-ray diffraction      tensile property      reversed austenite      deformation induced phase transformation     
Received:  30 August 2015     
Fund: Supported by National Natural Science Foundation of China (No.51201167)

Cite this article: 


URL:     OR

Fig.1  Microstructures of 9Ni steel after quenching and larmellarizing (a) and followed by tempering at 560 ℃ (b), 580 ℃ (c), 600 ℃ (d) and 640 ℃ (e)
Fig.2  Variation of volume fraction of reversed austenite in 9Ni steel with different tempering temperatures
Fig.3  Variation of strength of 9Ni steel with tempering temperatures during room temperature uniaxial tensile test
Fig.4  Variation of volume fraction of reversed austenite with engineering stress in 9Ni steel during in situ tensile test
Fig.5  Variations of work-hardening exponent and volume fraction of reversed austenite with true strain in 9Ni steel during in situ tensile test
Fig.6  Bright-field (a, d, e), dark-field (b) TEM images and SAED patterns (c, f) of 9Ni steel before (a~c) and after applied stresses to 500 MPa (d) and 700 MPa (e, f)
Fig.7  XRD spectrum of 9Ni steel after quenching and larmellarizing
Fig.8  Dilatometric curve of 9Ni steel after quenching and larmellarizing (ΔL—length change, Ac1—phase transition start temperature, Ac3—phase transition finish temperature)
[1] Liu D F, Yang X L, Hou L F, Cui T X, Hu Y T, Wei Y H.J Iron Steel Res, 2009; 21(9): 1
[1] (刘东风, 杨秀利, 侯利锋, 崔天燮, 胡玉亭, 卫英慧. 钢铁研究学报, 2009; 21(9): 1)
[2] Yang Y, Cai Q, Tang D, Wu H.Int J Miner Metall Mater, 2010; 17: 587
[3] Yan C Y, Li W S, Xue Z K, Bai S W, Feng B.Trans China Weld Inst, 2008; 29(3): 49
[3] (严春妍, 李午申, 薛振奎, 白世武, 冯斌. 焊接学报, 2008; 29(3): 49)
[4] Chen J. Master Thesis, Northest University, Shenyang, 2010
[4] (陈俊. 东北大学硕士学位论文, 沈阳, 2010)
[5] Zhang K, Wu H B, Tang D, Sun W H.J Univ Sci Technol Beijing, 2012; 34: 651
[5] (张坤, 武会宾, 唐荻, 孙卫华. 北京科技大学学报, 2012; 34: 651)
[6] Yang C D, Tang W J, Zhang H Q, Cong Y, Hou H.Hot Working Tech, 2008; 37(2): 73
[6] (杨才定, 唐文军, 张汉谦, 丛郁, 候洪. 热加工工艺, 2008; 37(2): 73)
[7] Xie Z L, Liu Z Y, Chen J, Wang G D.Trans Mater Heat Treat, 2013; 34(5): 51
[7] (谢章龙, 刘振宇, 陈俊, 王国栋. 材料热处理学报, 2013; 34(5): 51)
[8] Li G L, Meng X M, Zhang F T, Wu Y K.Acta Metall Sin, 1996; 32: 1121
[8] (李光来, 孟祥敏, 张弗天, 吴玉琨. 金属学报, 1996; 32: 1121)
[9] Zhang F T, Wang J Y, Guo Y Y.Acta Metall Sin, 1984; 20: 405
[9] (张弗天, 王景韫, 郭蕴宜. 金属学报, 1984; 20: 405)
[10] Meng X M, Li G L, Zhang F T, Wu Y K.Acta Metall Sin, 1998; 34: 565
[10] (孟祥敏, 李光来, 张弗天, 吴玉琨. 金属学报, 1998; 34: 565)
[11] Yang Y H, Cai Q W, Wu H B, Wang H.Acta Metall Sin, 2009; 45: 270
[11] (杨跃辉, 蔡庆伍, 武会宾, 王华. 金属学报, 2009; 45: 270)
[12] Fultz B, Kim J I, Kim Y H, Kim H J, Fior G O, Morris J W.Metall Trans, 1985; 16A: 2237
[13] Fultz B, Morris J W.Metall Trans, 1985; 12A: 2251
[14] Fultz B, Kim J I, Kim Y H, Morris J W.Metall Trans, 1986; 17A: 967
[15] Zhang F T, Lou Z F, Ye Y G, Li D Y.Acta Metall Sin, 1994; 30: 239
[15] (张弗天, 楼志飞, 叶裕恭, 李端义. 金属学报, 1994; 30: 239)
[16] Syn C K, Fultz B, Morris J W.Metall Trans, 1978; 9A: 1635
[17] Lei M, Guo Y Y.Acta Metall Sin, 1989; 25: 13
[17] (雷鸣, 郭蕴宜. 金属学报, 1989; 25: 13)
[18] Zhang K, Tang D, Wu H B.Heat Treat Met, 2012; 37(3): 85
[18] (张坤, 唐荻, 武会宾. 金属热处理, 2012; 37(3): 85)
[19] Jang J, Ju J B, Lee B W, Kwon D, Kim W S.Mater Sci Eng, 2003; A340: 68
[20] Zhao X, Pan T, Wang Q, Su H, Yang C, Yang Q.J Iron Steel Res Int, 2011; 18(5): 47
[21] Nakada N, Syarif J, Tsuchiyama T, Takaki S.Mater Sci Eng, 2004; A374: 137
[22] Zhang S H, Wang P, Li D Z, Li Y Y.Mater Sci Eng, 2015; A635: 129
[23] Zhang S H, Wang P, Li D Z, Li Y Y.Acta Metall Sin, 2015; 51: 1306
[23] (张盛华, 王培, 李殿中, 李依依. 金属学报, 2015; 51: 1306)
[24] Wang P, Xiao N M, Lu S P, Li D Z, Li Y Y.Mater Sci Eng, 2013; A586: 292
[25] Jacques P J, Furnemont Q, Godet S, Pardoen T, Conlon K T, Delannay F.Philos Mag, 2006; 86: 2371
[26] Jacques P J, Furnémont Q, Lani F, Pardoen T, Delannay F.Acta Mater, 2007; 55: 3681
[27] Wang P, Lu S P, Li D Z, Kang X H, Li Y Y.Acta Metall Sin, 2008; 44: 681
[27] (王培, 陆善平, 李殿中, 康秀红, 李依依. 金属学报, 2008; 44: 681)
[28] Tamura I, Tomota Y, Ozawa M.Proc Conf on Microstructure and Design of Alloys, London: Institute of Metals and Iron and Steel Institute, 1973: 611
[1] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[3] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[4] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[5] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[6] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[7] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[8] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[9] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[10] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[11] Meng WANG, Zhenyu LIU, Chenggang LI. Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel[J]. 金属学报, 2017, 53(8): 947-956.
[12] Jinxia YANG,Futao XU,Donglin ZHOU,Yuan SUN,Xingyu HOU,Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature[J]. 金属学报, 2017, 53(6): 703-708.
[13] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
[14] Fenjun LIU, Li FU, Haiyan CHEN. Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding[J]. 金属学报, 2017, 53(12): 1651-1658.
No Suggested Reading articles found!