Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (3): 292-296     DOI:
Research Articles Current Issue | Archive | Adv Search |
MODELING DYNAMIC RECRYSTALLIZATION OF PURE COPPER USING CELLULAR AUTOMATON METHOD
Cite this article: 

. MODELING DYNAMIC RECRYSTALLIZATION OF PURE COPPER USING CELLULAR AUTOMATON METHOD. Acta Metall Sin, 2008, 44(3): 292-296 .

Download:  PDF(1123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the fundamental metallurgical principles of metal hot working process, a two-dimensional dynamic recrystallization(DRX) model of pure copper was built up by using cellular automata(CA) to simulate the microstructural evolution during thermomechanical processing with DRX. It could calculate the variation of the flow stress, the orientation and mean size of recrystallization grains(R-grains). The flow stress was evaluated from the average dislocation density of the matrix and all the R-grains. The dynamic recrystalization process for different strains, strain rates, temperatures were simulated. The predictions agree well with experimental results for pure copper at the same hot working condition. The model provides an elementary link for the microscopic dislocation activities, mesoscopic grain boundary movement dynamics, and macroscopic hot working parameters, and paves the way for the multiscale modeling in the future.
Key words:  dynamic recrystallization      cellular automata      microstructure evolution      growth kinetics      
Received:  12 July 2007     
ZTFLH:  TG14  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I3/292

[1]Goetz R L,Seetharaman V.Scr Mater,1998;38:405
[2]Hesselbarth H W,G(?)bel I R.Acta Metall Mater,1991; 39:2135
[3]Ding R,Guo Z X.Compd Mater Sci,2002;23:209
[4]Kugler G,Turk R.Acta Mater,2004;52:4659
[5]Xiao H,Yanagimoto J.Chin J Mech Eng,2005;41:148 (肖宏,柳本润.机械工程学报,2005;41:148)
[6]He Y,Zhang L W,Niu J,Pei J B.Trans Mater Heat Treat, 2005;26(4):120 (何燕,张立文,牛静,裴继斌.材料热处理学报,2005;26(4):120)
[7]Deng X H,Zhang L W,He Y,Pei J B,Lu Y.J Plast Eng, 2007;14(2):24 (邓小虎,张立文,何燕,裴继斌,卢瑜.塑性工程学报,2007;14(2):24)
[8]Raabe D.Annu Rev Mater Res,2002;32:53
[9]Mecking H,Kocks U F.Acta Metall,1981;29:1865
[10]Roberts W,Ahlblom B.Acta Metall,1978;26:801
[11]Derby B.Acta Metall Mater,1991;39:955
[12]Read W T,Shockley W.Phys Rev,1950;78:275
[13]Roberts W,Boden H,Ahlblom B.Met Sci,1979;3-4:195
[14]Blaz L,Sakai T,Jonas J J.Met Sci,1983;17:609
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[10] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[11] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[15] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
No Suggested Reading articles found!