Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 243-248     DOI:
Research Articles Current Issue | Archive | Adv Search |
STUDY ON MICROSTRUCTURE SIMULATION OF ZL114A ALLOY DURING LOW PRESSURE DIE CASTING PROCESS
Bin Li;;;Baicheng LIU;;;
清华大学机械系
Cite this article: 

Bin Li; Baicheng LIU. STUDY ON MICROSTRUCTURE SIMULATION OF ZL114A ALLOY DURING LOW PRESSURE DIE CASTING PROCESS. Acta Metall Sin, 2008, 44(2): 243-248 .

Download:  PDF(651KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A nucleation model based on the statistical analysis of a number of experimental data was developed and the related thermodynamics and kinetics parameters were presented for low pressure die casting of ZL114A alloy. A modified CA-FD method was proposed to simulate macro solidification process and microstructure evolution of the alloy. The preferential growth orientation, the solute redistribution in both liquid and solid, the solid/liquid interface curvature and the growth anisotropy were all considered in the model. The grain size, secondary dendrite arm spacing and eutectic content volume fraction of the alloy at different cooling rate were predicted and compared with experimental results of step-shaped sample casting.
Key words:  aluminum alloy      low pressure die casting      microstructure      numerical simulation      nucleation model      
Received:  18 April 2007     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/243

[1]Li M E,Wang Y X,Yang G C,Xing J D.Mech Sci Tech- nol,2002;21:824 (李梅娥,王友序,杨根仓,邢建东.机械科学与技术,2002;21:824)
[2]Chen L L,Liu R X,Lin H T,Pan Z Y,Zhi Q M,Wu Z Y.Spec Cast Nonferr Alloy,2002;(s1):173 (陈立亮,刘瑞祥,林汉同,潘增源,支前明,吴祖宴.特种铸造及有色合金,2002;(s1):173)
[3]Cheng W L,Xiong S M,Liu B C.Foundry,2003;52:609 (程万里,熊守美,柳百成.铸造,2003;52:609)
[4]Wan L J,Zhang H,Jing T.Hot Work Technol,2005;(12): 27 (万柳军,张辉,荆涛.热加工工艺,2005;(12):27)
[5]Nastac L.Acta Mater,1999;47:4253
[6]Liu Y,Xu Q Y,Liu B C.Tsinghua Sci Technol,2006;11: 495
[7]Liang Z J,Xu Q Y,Li J R,Yuan H L,Liu S Z,Liu B C. Acta Metall Sin,2004;40:439 (梁作俭,许庆彦,李嘉荣,袁海龙,刘世忠,柳百成.金属学报,2004;40:439)
[8]Zhu M F,Hong C P.Metall Mater Trans,2004;35A:1555
[9]Zhu M F,Chen J,Sun G X,Hong C P.Acta Metall Sin, 2005;41:583 (朱鸣芳,陈晋,孙国雄,洪俊杓.金属学报,2005;41:583)
[10]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2003;34A:367
[11]Li Q,Li D Z,Qian B N.Acta Metall Sin,2004;40:634 (李强,李殿中,钱百年.金属学报,2004;40:634)
[12]Wang Q G,Davidson C J.J Mater Sci,2001;36:739
[13]Thěvoz Ph,Desbiolles J-L,Rappaz M.Metall Mater Trans,1989;20A:311
[14]Rappaz M,Boettinger W J.Acta Mater,1999;47:3205
[15]Thompson C V,Spaepen F.Acta Metall,1983;31:2021
[16]Zhang X Z.Acta Mater,1998;46:1135
[17]Cheng Z W.PhD Dissertation,Northwestern Polytechni- cal University,Xi'an,2003:57 (陈忠伟.西北工业大学博士学位论文,西安,2003:57)
[18]Zhu M F,Kim J M,Hong C P.ISIJ Int,2001;41:992Y
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!