Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (10): 1061-1064     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Ta Content on Microstructure and Mechanical Properties of Nb/ Nb5Si3 In-situ Composites
中国科学院金属研究所
Cite this article: 

. Effect of Ta Content on Microstructure and Mechanical Properties of Nb/ Nb5Si3 In-situ Composites. Acta Metall Sin, 2006, 42(10): 1061-1064 .

Download:  PDF(240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Nb/ Nb5Si3 in-situ composites were prepared by arc melting in vacuum. Effects of Ta content on the microstructure and mechanical properties of the alloys were investigated. The results show that Ta mainly distributes in Nb solid solution phase. With increasing Ta content the amount of Nb5Si3 phase decreases, while that of Nb solid solution phase increases. Ta promotes the transformation ofβ-Nb5Si3 to α-Nb5Si3. The addition of Ta is beneficial to the compressive strength at room temperature and high temperature. In addition, the compressive strength of 5at.% Ta-containing alloy is superior to that of other alloys at high temperature.
Key words:  Nb/ Nb5Si3 in-situ composites      intermetallic      alloying      microstructure      compressive properties      
Received:  16 March 2006     
ZTFLH:  TG146.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I10/1061

[1]Caron P,Khan T.Aerasp Sci Technol,1999;3:513
[2]Fu H Z.J Aeronaut Mater,1998;18(4):52(傅恒志.航空材料学报,1998;18(4):52)
[3]Radhakrishnan R,Bhanduri S,Henager C H.JOM,1997;49(1):41
[4]Bewlay B P,Jackson M R,Zhao J C,Subramanian P R.Metall Mater Trans,2003;34A:2043
[5]Qu S Y,Wang R M,Han Y F.Mater Rev,2002;16(4):31(曲士昱,王荣明,韩雅芳.材料导报,2002;16(4):31)
[6]Gao L M,Guo X P.Mater Rev,2005;19(7):72(高丽梅,郭喜平.材料导报,2005;19(7):72)
[7]Subramanian P R,Mendiratta M G,Dimiduk D M,Stucke M A.Mater Sci Eng,1997;A239-240:1
[8]Bewlay B P,Jackson M R,Lipsitt H A.Metall Mater Trans,1996;27A:3801
[9]Kim W Y,Tanaka H,Kasama A.Intermetallies,2001;9:521
[10]Kim J H,Tabaru T,Sakamoto M,Hanada S.Mater Sci Eng,2004;A372:137
[11]Qu S Y,Wang R M,Han Y F.J Aeronaut Mater,2001;21(3):9(曲士昱,王荣明,韩雅芳.航空材料学报,2001;21(3):9)
[12]Mendiratta M G,Lewandowski J J,Dimiduk D M.Metall Trans,1991;22A:1573
[13]Menon E S K.In:Kim Y W,Carneiro T eds,Niobium:High Temperature Applications,Proc,Warrendale,USA:TMS,2003:63
[14]Kumar K S,Manna S K.Mater Res Soc Syrup Proc,1989;133:415
[15]Massalski T B.Binary Alloy Phase Diagram.2nd,Materials Park,Ohio:The Materials Information Society,1996:2764
[16]Massalski T B.Binary Alloy Phase Diagram.2nd,Materials Park,Ohio:The Materials Information Society,1996:2772
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!