Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (2): 171-176     DOI:
Research Articles Current Issue | Archive | Adv Search |
STUDY OF COLD DEFORMATION BEHAVIORS OF A HIGH NITROGEN AUSTENITIC STAINLESS STEEL AND 316L STAINLESS STEEL
;;;
Cite this article: 

;. STUDY OF COLD DEFORMATION BEHAVIORS OF A HIGH NITROGEN AUSTENITIC STAINLESS STEEL AND 316L STAINLESS STEEL. Acta Metall Sin, 2007, 43(2): 171-176 .

Download:  PDF(408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cold deformation can effectively enhance the strength of austenitic stainless steels. In this paper, a high nitrogen austenitic stainless steel with 1.0wt.% nitrogen and the 316L stainless steel were investigated on their microstructures, true stress-strain curves and micro-hardness after compressive deformation at room temperature. It was found that both the mechanical twins and the slips participated in the deformation for both two steels under the deformation less than 20%, but the slips turned to be dominant for 316L when the deformation was increased to 50%, the high nitrogen steel still remaining the above two mechanisms. There was no α’ martensite transformation in the high nitrogen steel under deformation, showing better structure stability, but there was martensite in the 316L. The strength, the micro-hardness and the work-hardening effect of the high nitrogen steel were much higher than those of the 316L, and the strength could be largely enhanced by cold deformation for the two steels. The micro-hardness was related to the crystal orientation for the two steels and the effect of crystal orientation was larger than that of the microstructure inhomogeneity. The mechanism of the high nitrogen stainless steel showing excellent properties was also analyzed and discussed.
Key words:  high nitrogen austenitic stainless steel      316L stainless steel      cold deformation      
Received:  14 July 2006     
ZTFLH:  TG142.71  
  TG113.25  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I2/171

[1]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:8
[2]Simmons J W.Mater Sci Eng,1996;A207:159
[3]Byrnes M L G,Grujieic M,Owen W S.Acta Metall,1987;35:1853
[4]Balachandran G,Bhatia M L,Ballal N B,Krishna R P.ISIJ Int,2001;41:1018
[5]Menzel J,Kirschner W,Gerald S.ISIJ Int,1996;36:893
[6]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:87
[7]Kubota S,Xia Y,Tomota Y.ISIJ Int,1998;38:474
[8]Marshall P.Austenitie Stainless Steels.New York:Else-vier Applied Science Publishers,1984:28
[9]Di S A,Kenny J M.d Mater Sci,2003;38:3257
[10]Sandip G C,Samar D,De P K.Acta Mater,2005;53:3951
[11]RaviKumar B,Mahato B,Bandyopadhyay N R,Bhattacharya D K.Mater Sci Eng,2005;A394:296
[12]Müllner P,Solenthaler C,Uggowitzer P,Speidel M O.Mater Sci Eng,1993;A164:164
[13]Amar K D,David C M,Martin C M,John G S,David K M.Scr Mater,2004;50:1445
[14]Dailly R B,Hendry A.Mater Sci Forum,1999;318-320:427
[15]Gavriljuk V G,Berns H,Escher C,Glavatskaya N I,Sozinov A,Petrov Y N.Mater Sci Eng,1999;A271:14
[16]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:64
[17]Marshall P.Austenitic Stainless Steels.London and New York:Elsevier Applied Science Publishers,1984:27
[18]Karaman I,Sehitoglu H,Maier H J,Chumlyakov Y I.Acta Mater,2001;49:3919
[19]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:66
[20]Gavriljuk V G,Berns H.High Nitrogen Steels.New York:Springer-verlag Berlin Heidelberg,1999:58
[21]Kamachi M U,Raj B.High Nitrogen Steels and Stainless Steels.New Delhi:Narosa Publishing House,2004:114
[22]Grujicic M,Nilsson J-O,Owen W S,Thorwaldsson T.In:Foct J,Hendry A eds.,High Nitrogen Steels HNS-88,Brookfield:North Am Publ Centre,1989:151
[23]Sassen J,Garrat-Reed A J,Owen W S.In:Foct J,Hendry A eds.,High Nitrogen Steels HNS-88,Brookfield:North Am Publ Centre,1989:159
[1] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[2] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[3] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[4] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[5] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[6] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU, Yonghao LU. Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel[J]. 金属学报, 2018, 54(10): 1377-1386.
[7] Yutian DING,Yubi GAO,Zhengyi DOU,Xin GAO,Dexue LIU,Zhi JIA. Precipitation Behavior of δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube[J]. 金属学报, 2017, 53(6): 695-702.
[8] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[9] Guanglu MA, Xinyu CUI, Yanfang SHEN, CINCA Nuria, M. GUILEMANY Josep, Tianying XIONG. INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER[J]. 金属学报, 2016, 52(12): 1610-1618.
[10] Yongjun FU, Ping YANG, Qiwu JIANG, Xiaoda WANG, Wenxu JIN. EVOLUTION OF TEXTURES OF COLUMNAR GRAINS IN Fe-3%Si ELECTRICAL STEEL SLABS[J]. 金属学报, 2015, 51(5): 545-552.
[11] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[12] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[13] LA Peiqing, MENG Qian, YAO Liang, ZHOU Maoxiong, Wei Yupeng. EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL[J]. 金属学报, 2013, 49(6): 739-744.
[14] WANG Guan LIN Xiaoqun. EFFECT OF COLD DEFORMATION ON THE CORROSION BEHAVIOUR OF Mn–CONTAINING ALUMINIUM ALLOY TUBE[J]. 金属学报, 2011, 47(3): 361-366.
[15] LIU Guangzhou WANG Jianming ZHANG Jianqing CAO Chunan. EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON THE CORROSION BEHAVIOR OF 316L STAINLESS STEEL[J]. 金属学报, 2011, 47(12): 1600-1604.
No Suggested Reading articles found!