Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1610-1618    DOI: 10.11900/0412.1961.2016.00154
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER
Guanglu MA1,2,Xinyu CUI1(),Yanfang SHEN1,CINCA Nuria2,M. GUILEMANY Josep2,Tianying XIONG1
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2) Thermal Spray Center (CPT), University of Barcelona, Barcelona 08028, Spain;;
Cite this article: 

Guanglu MA, Xinyu CUI, Yanfang SHEN, CINCA Nuria, M. GUILEMANY Josep, Tianying XIONG. INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER. Acta Metall Sin, 2016, 52(12): 1610-1618.

Download:  HTML  PDF(2842KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nowadays the theory of critical velocity of particles in cold spray has been already accepted generally. In the familiar semi-empirical formulas of the theory, only the properties and conditions of particles have been considered but there is no consideration of substrate. Yet most researches for effect of substrates' properties implied hardness of substrate was the most essential. However, little attention has been devoted to influence of other mechanical properties (e.g. Young's modulus and Poisson's ratio) and their cooperation on the deposition behavior. In order to study the effect systematically, 316L stainless steel particles were deposited by wipe test on six different substrates with a widely range of mechanical properties including Young's modulus, hardness and Poisson's ratio. They are pure Al, pure Cu, 7075T6 Al alloy, mild steel, Inconel625 and Ti6Al4V. The specimens have been investigated from morphology, cross-section and deposition efficiency. It is found that not only hardness but also Young's modulus and Poisson's ratio can affect deformation and deposition of bonded particles through playing a role in energy partition and bonding mechanism. In the case, the deformation of deposited particles is dependent on energy accepted by the particles, while the deposition efficiency is related to the bonding mechanism and energy accepted by substrate. According to the deformation level of the deposited particles, there are two kinds of substrate materials. On the one hand, bonding between particles with little deformation and their substrates is mainly dependent on mechanical interlock, in which both hardness and Young′s modulus of the substrates are lower than that of the particle. Then a parameter, Epara, has been calculated to predict the tendency of deposition efficiency for the situations. AZ91 alloy has been employed as substrate material in confirmatory experiment. Its result indicates that Epara is available for tendency prediction of the deposition efficiency of spherical-like deposited particle. On the other hand, the bonding mechanism of deposited particle with obviously flattening is more complex. In this situation, either hardness or Young′s modulus of the substrates is higher than that of the particle. The more area of fresh metal contacts on the interface, the higher deposition efficiency is.

Key words:  316L stainless steel,      mechanical properties of substrate,      deposition behavior     
Received:  21 April 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00154     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1610

Fig.1  SEM image (a) and particle size distribution (b) of 316L stainless steel feedstock powder
Fig.2  SEM images of as-sprayed single 316L particles on pure Al (a), pure Cu (b), AISI1015 mild steel (c), 7075T6 Al alloy (d), Inconel625 (e) and Ti6Al4V (f) (Spray condition: 800 ℃, 3.5 MPa)
Fig.3  Cross section SEM images of 316L particles deposited on pure Al (a), pure Cu (b), AISI1015 mild steel (c), 7075T6 Al alloy (d), Inconel625 (e) and Ti6Al4V (f) (l—long axis diameter of particle. Spray condition: 800 ℃, 3.5 MPa)
Material Hardness Young's Poisson's ratio Rf Rd / %
HV modulus / GPa
316L 199 190 0.30
Al 27 69 0.33 1.10±0.10 96.2±2
Cu 98 120 0.34 1.38±0.20 95.5±2
AISI1015 150 205 0.29 1.64±0.20 86.9±4
7075T6 181 71 0.33 1.25±0.05 20.9±6
Inconel625 276 207 0.31 1.62±0.20 96.5±2
Ti6Al4V 352 114 0.34 1.88±0.20 95.9±3
AZ91 72 45 0.35 55.0±6
Table 1  Mechanical properties of materials, flattening ratios (Rf) and deposition efficiencies (Rd) of 316L stainless steel particles on different substrates (800 ℃, 3.5 MPa )
Fig.4  Graphic of comparison of Rd and Epara vs hardness (a) and Young's modulus (b) for 316L stainless steel particles on weak substrates
[1] Alkhimov A P, Kosarev V F, Papyrin A N.Soviet Phys-Doklady, 1990; 35: 1047
[2] Li W Y, Yu M.Surf Technol, 2010; 39(5): 95
[2] (李文亚, 余敏. 表面技术, 2010; 39(5): 95)
[3] Tokarev A O.Met Sci Heat Treat, 1996; 38(3): 136
[4] Assadi H, G?rtner F, Stoltenhoff T, Kreye H.Acta Mater, 2003; 51: 4379
[5] Schmidt T, G?rtner F, Assadi H, Kreye H.Acta Mater, 2006; 54: 729
[6] Meng X M, Zhang J B, Liang Y L, Zhao J.Bao-Steel Technol, 2011; (5): 37
[6] (孟宪明, 张俊宝, 梁永立, 赵杰. 宝钢技术, 2011; (5): 37)
[7] Wu X K, Zhang J S, Zhou X L, Cui H, Liu J C.Sci China Technol Sci, 2012; 55: 357
[8] Christoulis D K, Guetta S, Guipont V, Jeandin M.J Therm Spray Technol, 2011; 20: 523
[9] Marrocco T, McCartney D G, Shipway P H, Sturgeon A J.J Therm Spray Technol, 2006; 15: 263
[10] Bae G, Xiong Y, Kumar S, Kang K, Lee C.Acta Mater, 2008; 56: 4858
[11] Yin S, Suo X K, Su J Q, Guo Z W, Liao H L, Wang X F. J Therm Spray Technol, 2014; 23: 76
[12] Gao P H, Li C J, Yang G J, Li Y G, Li C X.Appl Surf Sci, 2010; 256: 2263
[13] Taguchi G.System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs. New York: UNIPUB/Kraus International Publications, 1987: 1
[14] Taguchi G, Chowdhury S, Wu Y.Taguchi's Quality Engineering Handbook. New Jersey: Wiley-Interscience, 2004: 56
[15] King P C, Zahiri S H, Jahedi M.Acta Mater, 2008; 56: 5617
[16] Dykhuizen R C, Smith M F.J Therm Spray Technol, 1998; 7: 205
[17] Jodoin B, Raletz F, Vardelle M.Surf Coat Technol, 2006; 200: 4424
[18] Grujicic M, Zhao C L, Tong C, DeRosset W S, Helfritch D.Mater Sci Eng, 2004; A368: 222
[19] Ajdelsztajn L, Schoenung J M, Jodoin B, Kim G E.Metall Mater Trans, 2005; 36A: 657
[20] Jen T, Li L, Cui W, Chen Q, Zhang X.Int J Heat Mass Trans, 2005; 48: 4384
[21] Samareh B, Dolatabadi A. J Fluids Eng, 2008; 130: 081702
[22] Stolenhoff T, Kreye H, Ritchter H J.J Therm Spray Technol, 2002; 11: 542
[23] Samareh B, Stier O, Luther V, Dolatabadi A.J Therm Spray Technol, 2009; 18: 934
[24] Zhang D, Shipway P H, McCartney D G.China Surf Eng, 2008; 21(4): 1
[24] (Zhang D, Shipway P H, McCartney D G. 中国表面工程, 2008; 21(4): 1)
[25] Schmidt T, Assadi H, G?rtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T.J Therm Spray Technol, 2009; 18: 794
[26] Li W Y, Li C J, Wang Y Y, Yang G J.Acta Metall Sin, 2005; 41: 282
[26] (李文亚, 李长久, 王豫跃, 杨冠军. 金属学报, 2005; 41: 282)
[27] Fukanuma H, Ohno N, Sun B, Huang R.Surf Coat Technol, 2006; 201: 1935
[28] Wu X K, Zhou X L, Wang J G, Zhang J S.Acta Metall Sin, 2010; 46: 385
[28] (巫湘坤, 周香林, 王建国, 张济山. 金属学报, 2010; 46: 385)
[29] Xiang J Y, Song R B, Hou D P, Ren P D.Mater Sci Technol, 2011; 19(4): 128
[29] (项建英, 宋仁伯, 侯东坡, 任培东. 材料科学与工艺, 2011; 19(4): 128)
[30] Ma G L, Kong L Y, Li T F, Cinca N, Guilemany J M, Xiong T Y. Rare Met Mater Eng#/magtechI#, 2016; accepted
[30] (马广璐, 孔令艳, 李铁藩, Nuria Cinca, Josep M Guilemany, 熊天英. 稀有金属材料与工程, 2016; 录用)
[31] Grujicic M, Zhao C L, DeRosset W S, Helfritch D.Mater Des, 2004; 25: 681
[32] McCune R C, Donlon W T, Popoola O O, Cartwright E L.J Therm Spray Technol, 2000; 9: 73
[33] Grujicic M, Saylora J R, Beasleya D E, De Rosset W S, Helfritch D.Appl Surf Sci, 2003; 219: 211
[34] Trompetter W J, Markwitz A, Hyland M, Munroe P.J Therm Spray Technol, 2005; 14: 524
[35] Li W Y, Zhang C, Guo X, Li C J, Liao H, Coddet C.Appl Surf Sci, 2007; 254: 517
[36] Bolesta A, Fomin V M, Sharafutdinov M R, Tolochko B P.Nucl Instrum Methods Phys Res, 2001; 470A: 249
[37] Johnson K L. Contact Mechanics.Cambridge: Cambridge University Press, 1985: 363
[38] Levin B F, Vecchio K S, Dupont J N, Marder A R.Metall Mater Trans, 1999; 30A: 1763
[39] Rahmati S, Ghaei A. J Therm Spray Technol, 2014; 23: 530
[1] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[2] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[3] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[4] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU, Yonghao LU. Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel[J]. 金属学报, 2018, 54(10): 1377-1386.
[5] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[6] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[7] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[8] LA Peiqing, MENG Qian, YAO Liang, ZHOU Maoxiong, Wei Yupeng. EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL[J]. 金属学报, 2013, 49(6): 739-744.
[9] LIU Guangzhou WANG Jianming ZHANG Jianqing CAO Chunan. EFFECT OF ELECTROLYTIC TREATMENT OF BALLAST WATER ON THE CORROSION BEHAVIOR OF 316L STAINLESS STEEL[J]. 金属学报, 2011, 47(12): 1600-1604.
[10] SHI Yongjuan REN Yibin ZHANG Bingchun YANG Ke. THE EFFECT OF PASSIVATION ON THE HAEMOCOMPATIBILITY OF 316L STAINLESS STEEL[J]. 金属学报, 2011, 47(12): 1575-1580.
[11] FANG Xinxian BAI Yunqiang WANG Zhangzhong. EROSION CORROSION BEHAVIOUR OF J4 STAINLESS STEEL AND ELECTROLESS PLATING COATINGS OF Ni–P AND Ni–Cu–P IN LIQUID–SOLID TWO–PHASE FLOW[J]. 金属学报, 2010, 46(2): 239-244.
[12] SONG Renbo XIANG Jianying HOU Dongpo REN Peidong. BEHAVIOR AND MECHANISM OF HOT WORK-HARDENING FOR 316L STAINLESS STEEL[J]. 金属学报, 2010, 46(1): 57-61.
[13] JIANG Huifeng CHEN Xuedong FAN Zhichao DONG Jie JIANG Heng LU Shouxiang. EFFECT OF DYNAMIC STRAIN AGING ON FATIGUE--CREEP BEHAVIOR OF 316L AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2009, 45(3): 326-330.
[14] ZHANG Hua-Bing. EFFECT OF GAS TEMPERATURE ON DEFORMATION AND DEPOSITION BEHAVIORS OF COLD-SPRAYED Ni PARTICLES[J]. 金属学报, 2007, 43(8): 823-828 .
[15] Xu Wang. EXPERIMENTAL RESEARCH ON THE SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH-INTENSITY PULSED ION BEAMS[J]. 金属学报, 2007, 43(4): 393-398 .
No Suggested Reading articles found!