Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 545-552    DOI: 10.11900/0412.1961.2014.00573
Current Issue | Archive | Adv Search |
EVOLUTION OF TEXTURES OF COLUMNAR GRAINS IN Fe-3%Si ELECTRICAL STEEL SLABS
Yongjun FU1,2,Ping YANG1(),Qiwu JIANG2,Xiaoda WANG2,Wenxu JIN2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Cold Rolling Silicon Plant, Anshan Steel Co., Ltd., Anshan 114021
Download:  HTML  PDF(8290KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Different numbers of columnar grains in a Fe-3%Si electrical steel slabs with their major axes being parallel to the rolling direction were used for cold rolling and recrystallization annealing. The evolution of the texture of columnar grains was followed by EBSD technique. The results show that, in the case of single columnar grain with cube orientation, cube texture is adverse to be retained in condition of primary cold rolling with high reduction and recrystallization annealing, while strong cube texture can form after secondary cold rolling with low reduction and recrystallization annealing. But the cube texture hinders strongly the abnormal growth of Goss grains. For the sample containing two columnar grains with Goss and cube orientation, the initial Goss orientation rotates to {111}<112> orientation quickly and cube texture is retained effectively during cold rolling by high reduction. The interaction between the Goss and cube columnar grains is not strong. For the multi-columnar grains with different orientations, the grain boundaries between columnar grains promote g-texture and weaken the cube texture, which is in favor of abnormal growth of Goss grains.

Key words:  columnar grain      Fe-3%Si electrical steel      cold deformation      recrystallization annealing      texture     
Received:  22 October 2014     
Fund: National Natural Science Foundation of China (No.51071024)

Cite this article: 

Yongjun FU, Ping YANG, Qiwu JIANG, Xiaoda WANG, Wenxu JIN. EVOLUTION OF TEXTURES OF COLUMNAR GRAINS IN Fe-3%Si ELECTRICAL STEEL SLABS. Acta Metall Sin, 2015, 51(5): 545-552.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00573     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/545

Fig.1  EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of initial columnar grains in three samples (ND—normal direction, RD—rolling direction, TD—transverse direction)

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.2  EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of primary cold rolled samples subjected to 82% reduction in the surface

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.3  EBSD orientation maps of primary cold rolled samples subjected to 82% reduction in the center

(a) double columnar grains (b) multi-columnar grains

Fig.4  EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of samples after cold rolling with 82% reduction and recrystallization annealing (j1, f and j2 are orientation Euler angles)

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.5  EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of the secondary cold rolled samples subjected to 47% reduction

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.6  EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of samples after cold rolling with 47% reduction and recrystallization annealing

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.7  EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of high temperature annealed samples

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.8  Variation trend to the content of grains with main orientations for single columnar grain (1—columnar, 2—primary cold rolling, 3—recrystallization annealing, 4—secondary cold rolling, 5—recrystallization annealing, 6—secondary recrystallization annealing)
Fig.9  Variation trend to the content of grains with main orientations for double columnar grains
Fig.10  Variation trend to the content of grains with main orientations for multi-columnar grains
[1] Walter J L, Hibbard W R. Trans Met Soc AIME, 1958; 212: 731
[2] Park J Y, Han K S, Woo J S, Chang S K, Rajmohan N, Szpunar J A. Acta Mater, 2002; 50: 1825
[3] Sakai T, Shiozaki M, Takashina K. J Appl Phys, 1979; 50: 2369
[4] Obara T, Takeuchi H, Takamiya T, Kan T. J Mater Eng Perform, 1993; 2: 205
[5] Takashima M, Obara T, Kan T. J Mater Eng Perform, 1993; 2: 249
[6] Dong H, Zhao Y, Yu X J, Lian F Z. J Iron Steel Res Int, 2009; 16: 86
[7] Littmann M F. Metall Trans, 1975; 6A: 1041
[8] Liu H T, Liu Z Y, Cao G M, Li C G, Wang G D. J Magn Magn Mater, 2011; 323: 2648
[9] Cheng L, Yang P, Fang Y P, Mao W M. J Magn Magn Mater, 2012; 324: 4068
[10] Heo N H, Chai K H, Na J G. Acta Mater, 2000; 48: 2901
[11] Park H K, Kim S J, Han H N, Han C H, Hwang N M. Mater Trans, 2010; 51: 1547
[12] Xiang L, Yue E B, Fan D D, Qiu S T, Zhao P. J Iron Steel Res Int, 2008; 15: 88
[13] Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037
[14] Li C S, Yang H, Wang Y F, Yu Y M. J Iron Steel Res Int, 2010; 17: 46
[15] Park S Y, Lim K M, Namkung J, Kim M C, Park C G. Scr Mater, 2006; 54: 621
[16] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48 : 784 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48 : 784)
[17] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 308 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48: 308)
[18] Shao Y Y, Yang P, Mao W M. Acta Metall Sin, 2014; 50: 259 (邵媛媛, 杨 平, 毛卫民. 金属学报, 2014; 50: 259)
[19] Walter J L, Koch E F. Acta Metall, 1963; 11: 923
[20] Walter J L, Koch E F. Acta Metall, 1962; 10: 1059
[21] Dunn C G. Acta Met, 1954; 2: 173
[1] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[2] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[3] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[4] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[5] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[6] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[7] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[8] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[9] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[10] Lina WANG, Ping YANG, Kai LI, Feng'e CUI, Weimin MAO. Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel[J]. 金属学报, 2018, 54(12): 1756-1766.
[11] Tingbiao GUO, Qi LI, Chen WANG, Feng ZHANG, Zhi JIA. Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. 金属学报, 2017, 53(8): 991-1000.
[12] Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet[J]. 金属学报, 2017, 53(8): 907-917.
[13] Yutian DING,Yubi GAO,Zhengyi DOU,Xin GAO,Dexue LIU,Zhi JIA. Precipitation Behavior of δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube[J]. 金属学报, 2017, 53(6): 695-702.
[14] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[15] Yaqiong YAN,Jinru LUO,Jishan ZHANG,Linzhong ZHUANG. Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling[J]. 金属学报, 2017, 53(1): 107-113.
No Suggested Reading articles found!