Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 911-916    DOI: 10.3724/SP.J.1037.2013.00171
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER
ZHANG Litao,WANG Jianqiu
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016
Cite this article: 

ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER. Acta Metall Sin, 2013, 49(8): 911-916.

Download:  PDF(800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress corrosion cracking growth rates of domestic forged nuclear grade 316L stainless steel (SS) were successfully measured in high temperature and high pressure water at various temperatures and under various loading mode. A direct current potential drop (DCPD) technique was used to monitor the crack growth throughout the test. The crack growth rate decreases with the increasing dissolved hydrogen content and the decreasing dissolved oxygen content. The crack growth rate under trapezoidal loading mode is bigger than that under constant loading. The fracture surface has typical intergranular stress corrosion cracking (IGSCC) characteristics.

Key words:  direct current potential drop (DCPD)      domestic forged nuclear grade 316L stainless steel      high temperature and high pressure water      stress corrosion crack growth rate     
Received:  08 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00171     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/911

[1] Han E H.  Acta Metall Sin, 2011; 47: 769
(韩恩厚. 金属学报, 2011; 47: 769)
[2] Han E H, Wang J Q, Wu X Q, Ke W.  Acta Metall Sin, 2010; 46: 1379
(韩恩厚, 王俭秋, 吴欣强, 柯伟. 金属学报, 2010; 46: 1379)
[3] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N.  Corros Sci, 2008; 50: 625
[4] Meng F J, Lu Z P, Shoji T, Wang J Q, Han E H, Ke W.  Corros Sci, 2011; 53: 2558
[5] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S.  Corros Sci, 2008; 50: 698
[6] Xue H, Li Z J, Lu Z P, Shoji T.  Corros Sci, 2011; 241: 731
[7] Andresen P L, Briant C L.  Corrosion, 1989; 45: 448
[8] Andresen P L.  Corrosion, 1991; 47: 917
[9] Andresen P L.  Corrosion, 1993; 49: 714
[10] Andresen P L.  Corrosion, 1987; 44: 450
[11] Andresen P L, Kim Y J.  Corrosion, 2003; 59: 584
[12] Bali S C, Kain V, Raja V S.  Corrosion, 2009; 65: 726
[13] Peng Q J, Teysseyre S, Andresen P L, Was G S.  Corrosion, 2007; 63: 1033
[14] Arioka K, Yamada T, Terachi T, Chiba G.  Corrosion, 2007; 63: 1114
[15] Arioka K, Yamada T, Terachi T, Chiba G.  Corrosion, 2006; 62: 568
[16] Byun T S, Hashimoto N, Farrell K.  Acta Mater, 2004; 52: 889
[17] Yamazaki S, Lu Z P, Ito Y, Takeda Y, Shoji T.  Corros Sci, 2008; 50: 835
[18] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S.  Corrosion, 2007; 63: 1021
[19] Andresen P L, Morra M M.  J Nucl Mater, 2008; 383: 97
[20] Peng Q J, Hou J, Sakaguchi K, Takeda Y, Shoji T.  Electrochim Acta, 2011; 56: 8375
[21] Andresen P L.  Corrosion, 2008; 64: 439
[22] Andresen P L, Hickling J, Ahluwalia A, Wilson J.  Corrosion, 2008; 64: 707
[23] Andresen P L, Briant C L.  Corrosion, 1989; 45: 448
[24] Andresen P L.  Corrosion, 1988; 44: 450
[25] Lu Z P, Shoji T, Takeda Y, Ito Y, Akira K, Tsuchiya N.  Corros Sci, 2008; 50: 625

No Suggested Reading articles found!