Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (9): 931-936     DOI:
Research Articles Current Issue | Archive | Adv Search |
STRAIN COMPATIBILITY BEHAVIOR IN Cu-6%Ag ALLOY DURING DRAWING INTO FILAMENTARY STRUCTURE
LIU Jiabin;Liang Meng
浙江大学金属材料研究所
Cite this article: 

LIU Jiabin; Liang Meng. STRAIN COMPATIBILITY BEHAVIOR IN Cu-6%Ag ALLOY DURING DRAWING INTO FILAMENTARY STRUCTURE. Acta Metall Sin, 2006, 42(9): 931-936 .

Download:  PDF(483KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cu-6%Ag (mass fraction) microcomposite, of which the primary structure consists of dendritic Cu matrix and non-equilibrium eutecticcolonies, was prepared by heavy cold drawing and intermediate heat treatments.The scales of different microstructural components were determined at different draw ratios and the strain compatibility was discussed by evaluating the strain level and strain increase rate for each microstructural component. The microstructural components display different strain levels and strain increase rates in different ranges of drawing strain because both have different characters of strain hardening. Therefore, the strain level and strain increase rate show a non-synchronous increase between both microstructural components with the increase of draw ratio when the microstructural components evolve from original as-cast morphology into filamentary structure.
Key words:  Cu-Ag alloy      microstructure      strain      
Received:  23 January 2006     
ZTFLH:  TB331  
  TG146.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I9/931

[1]Zhang L,Yan F,Meng L.Mater Rev,2003;17:15
(张雷,颜芳,孟亮.材料导报,2003;17:15)
[2]Wood J T,Embury J D,Ashby M F.Acta Mater,1997;45:1099
[3]Grunberger W,Heilmaier M,Schultz L.Physica,2001;294-295B:643
[4]Cleemput M V,Jones H,Burgt M V,Barrau J R,Lee J A,Eyssa Y,Schneider-Muntau H J.Phisica,1996;216B:226
[5]Hong S I,Hill M A.Acta Mater,1998;46:4111
[6]Han K,Embury J D,Sims J R,Campbell L J,Schneider-Muntau H J,Pantsyrnyi V I,Shikov A,Nikulin A,Vorobieva A.Mater Sci Eng,1999;A267:99
[7]Botcharova E,Freudenberger J,Schultz L.J Alloys Compd,2004;365:157
[8]Sakai Y,Schneider-Muntau H J.Acta Mater,1997;45:1017
[9]Zhang L,Meng L.Acta Metall Sin,2005;41:255
(张雷,孟亮.金属学报,2005;41:255)
[10]Grünberger W,Heilmaier M,Schultz L.Z Metallkd,2002;93:58
[11]Zhang X H,Ning Y T,Li Y N,Dai H,Yang J M.Chin J Nonferrous Met,2002;12:115
(张晓辉,宁远涛.李永年,戴红,杨家明.中国有色金属学报,2002;12:115)
[12]Yan F,Meng L,Zhang L.Acts Metall Sin,2004,40:891
(颜芳,孟亮,张雷.金属学报,2004;40:891)
[13]Benghalem A,G.Morris D.Acta Mater,1997;45:397
[14]Frommeyer G,Wassermann G.Acta Metall,1975;23:1353
[15]Han K,Vasquez A A,Xin Y,Kalu P N.Acta Mater,2003;51:767l
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!