Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 231-234     DOI:
Research Articles Current Issue | Archive | Adv Search |
Molecular dynamics studies on vacancy movement in crystalline silicon
QIAO Yonghong ; WANG Shaoqing
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

QIAO Yonghong; WANG Shaoqing. Molecular dynamics studies on vacancy movement in crystalline silicon. Acta Metall Sin, 2005, 41(3): 231-234 .

Download:  PDF(170KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A molecular dynamics (MD) simulations was performed to study the thermodynamic behavior of vacancies in crystalline silicon. In the simulation, we adopt the Stillinger-Weber potential used commonly for silicon to describe the interaction between atoms. Two kinds of methods were employed to trace the jump of a vacancy, and its activation energy in the crystal was also calculated. The statistic explanation of the definition of vacancy jump proposed by Thomas was given. Besides, we find that most of vacancy jumps are performed passing through a metastable state.
Key words:  Si crystal      vacancy migration energy      molecular dynamics      
Received:  21 April 2004     
ZTFLH:  TG111.4  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/231

[1] Fahey P M, Griffin P B, Plummer J D. Rev Mod Phys, 1989; 61: 289
[2] Nichols C S, van de Walle C G, Pantelides S T. Phys Rev Lett, 1989; 62: 1049
[3] Blochl P B, Smargiassi, Car E R, Laks D B, Andreoni W, Pantelides S T. Phys Rev Lett, 1993; 70: 2435
[4] Zhu J, Yang L H, Mailhiot C, de la Rubia T D, Gilmer G H. Nucl Instrum Methods, 1995; 102B: 29
[5] Zhu J, de la Rubia T D, Yang L H, Mailhiot C, Gilmer G H. Phys Rev, 1996; 54B: 4741
[6] Gilmer G H, de la Rubia T D, Stock D M, Jaraiz M. Nucl Instrum Methods Phys Res, 1995; 102B: 247
[7] Maroudas D, Brown R. Phys Rev, 1993; 47B: 15562
[8] Maroudas D, Brown R A. Appl Phys Lett, 1993; 62: 172
[9] Nastar M, Bulatov V V, Yip S. Phys Rev, 1996; 53B: 13521
[10] Kwok T, Ho P S, Yip S. Phys Rev, 1984; 29B: 5354
[11] Stillinger F H, Weber T A. Phys Rev, 1985; 31B: 5265
[12] Seeger A, Chik P. Phys Status Solidi, 1968; 29: 455
[13] Benedek R, Yang L H, Woodward C, Min B I. Phys Rev, 1992; 45B: 2607
[14] Goodwin L, Skinner A J, Pettifor D G. Europhys Lett, 1989; 9: 701 Wang C Z, Chan C T, Ho K M. Phys Rev Lett, 1991; 66: 189
[15] Tang M J, Colombo L, Zhu J, de la Rubia T D. Phys Rev, 1997; 55B: 14297
[16] Watkins G D. In: Huntley F A, ed., Lattice Defects in Semiconductors, 1974, Institute of Physics Conference Series No.23, London: Institute of Physics, 1975: 1
[17] Watkins G D, Troxell J R, Chatterjee A P. In: Huntley F A, ed., Defects and Radiation Effects in Semiconductors, 1978, Institute of Physics Conference Series No.46, London: Institute of Physics, 1979: 16
[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[8] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
No Suggested Reading articles found!