Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 372-382    DOI: 10.11900/0412.1961.2024.00370
Overview Current Issue | Archive | Adv Search |
Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys
WANG Huiyuan1,2,3(), MENG Zhaoyuan1,3, JIA Hailong1,3, XU Xinyu4(), HUA Zhenming2
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
2 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
3 International Center of Future Science, Jilin University, Changchun 130012, China
4 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
Cite this article: 

WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys. Acta Metall Sin, 2025, 61(3): 372-382.

Download:  HTML  PDF(2791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys are widely used in aerospace, automotive, and rail transit industries as the lightest structural metallic materials. Minor alloying additions have proven to be effective in enhancing processability and ductility. Recent studies demonstrate that low-alloyed Mg-Zn-Ca(-Al) alloys exhibit exceptional room-temperature formability due to their weak texture after rolling and annealing. This advancement indicates that magnesium alloy sheets could potentially replace steel and aluminum alloy in body panel applications. However, achieving improved strength while maintaining formability remains a substantial challenge, limiting the broader adoption of low-alloyed magnesium alloys. Bake hardening (BH) treatment, a technique commonly employed for steel and Al body panels to enhance post-forming strength, has recently been shown to strengthen Mg-Zn-Ca(-Al) alloy sheets. BH treatment partially addresses the trade-off between formability and strength in low-alloyed magnesium alloys by utilizing the limited solid solution atoms. As the development of BH magnesium alloy sheets progresses, further improvements in properties or the design of new alloy compositions require a thorough understanding of the relationship between microstructure and mechanical properties and the underlying mechanisms. This review examines recent advancements in low-alloyed bake-hardenable magnesium alloys, focusing on three mechanisms: dislocation segregation, twin boundary segregation, and Guinier-Preston (GP) zone-induced bake hardening. Additionally, it provides a brief outlook on the future development trends aimed at expanding the application range of these materials. The insights presented here are expected to guide the design and optimization of BH magnesium alloys with enhanced performance and broader industrial applicability.

Key words:  magnesium alloy      low alloying      bake-hardening      solute segregation      GP zone     
Received:  04 November 2024     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52334010);National Natural Science Foundation of China(52271103)
Corresponding Authors:  WANG Huiyuan, professor, Tel: (022)60201981, E-mail: wanghuiyuan@hebut.edu.cn;
XU Xinyu, Tel: (022)60201981, E-mail: xinyuxu@connect.hku.hk

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00370     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/372

Fig.1  Correlative TEM-APT characterization of 2% pre-strained and bake-hardened (BH) AZMX1110 alloys[15] (APT—atom probe tomography, insets in Figs.1a and d are the selected area electron diffraction (SAED) patterns)
(a) two-beam bright field-TEM (BF-TEM) image of 2% pre-strained sample obtained under the g = 011¯0 ( g —diffraction vector)
(b) APT map obtained from the same tip shown in Fig.1a
(c) overlay of Fig.1b and the corresponding region in Fig.1a
(d) two-beam BF-TEM image of bake-hardened sample obtained under the g = 011¯1
(e) APT map obtained from the same tip shown in Fig.1d (a-d represents four dislocations)
(f) overlay of Fig.1e and the corresponding region in Fig.1d
Fig.2  Tensile engineering stress-strain curves of annealed, directly aged, pre-strained, and bake-hardened ZXTM1000 alloys (a) and tensile yield strength as function of elongation for various rolled and extruded Mg alloys (b)[31]
AlloyProcessing

YS

MPa

UTS

MPa

EL

%

BH mechanismRef.
Mg-1.0Zn-0.45Ca-0.33Sn-0.2MnAnnealed26529124.6Solute segregation at dislocations[31]
BH29730121.9
Mg-2.0Zn-0.5CaT49520812.0

Solute segregation at dislocations

and twin boundaries

[32]
BH20024417.0
Mg-1.61Zn-0.57Mn-0.54Ca-0.46AlT423428821.1GP zone strengthening[33]
BH29331619.2
AA6016 Al alloyPA12223427.8Mg-Si cluster strengthening[34]
BH22329122.7
AA6111 Al alloyT415026819.2 (UL)Precipitate strengthening

[35]

PFHT28032510.9 (UL)
BH28933110.5 (UL)
B180H1 SteelBH24135238.0Solute segregation at dislocations[36]
Table 1  Mechanical properties of low-alloyed bake-hardening Mg alloys and bake-hardening steels/aluminum alloys[31-36]
Fig.3  High-angle annular dark field-scanning transmission electron microscope (HAADF-STEM) images (a-e) and EDS results (f-h) of pre-strained ZXTM1000 alloy during in situ heating[31] (White arrows in Figs.3a and e represent areas of EDS line scanning results in Fig.3h; red arrows in Fig.3e show the solute segregation at dislocations after in situ heating for 30 min)
(a) pre-strained (b) reaching at 175 oC (c) heating at 175 oC for 10 min (d) 175 oC for 20 min (e) 175 oC for 30 min
(f, g) EDS mappings of pre-strained (f) and after heating (g) samples
(h) EDS line scanning results of white arrows in Figs.3a and e
Fig.4  Periodic segregation of solutes in twinning boundaries (TBs)[39]
(a, c) HAADF-STEM images showing {101¯1} TBs in Mg-0.2Zn alloys (atomic fraction, %) (a) and {101¯2} TBs in Mg-0.8Zn alloy (atomic fraction, %) (c)
(b, d) close-ups of Figs.4a and c, respectively
(e, f) schematic illustrations of Figs.3b and d, respectively (Blue (in the paper plane) or purples (out of the paper plane) balls represent atoms in the A layer, yellow (in the paper plane) or orange (out of the paper plane) balls represent atoms in the B layer)
Fig.5  TEM analyses of the bake-hardened Mg-2.0Zn-0.5Ca alloy[32]
(a, e) BF-TEM images of twin boundary, taken from the [42¯2¯3¯] direction (a) and dislocations (e) (Insets are the corresponding SAED patterns at the white crosshair; M and T represent matrix and twinning, respectively)
(b, f) HAADF-STEM images of the white rectangle region in Fig.5a (b) and dislocations (f)
(c, d) EDS mappings of the white rectangle region in Fig.5b
(g) line EDS scanning result of the white line in Fig.5f
Fig.6  TEM and APT analyses and mechanical properties of the Mg-1.61Zn-0.57Mn-0.54Ca-0.46Al (ZMXA2110) alloy[33]
(a) electron backscattered diffraction (EBSD) image of ZMXA2110 alloy under solution treatment at 450 oC for 10 min (Inset is the distribution of grain size. RD—rolling direction, TD—transverse direction)
(b) strain-stress curves of solution treated and bake-hardened ZMXA2110 alloy (Inset is the Erichsen cupping test result of the solution treated ZMXA2110 alloy. IE—index Erichsen)
(c) tensile yield strength and IE value of ZMXA2110 alloy and other Mg sheet alloys
(d-f) TEM (d) and high resolution TEM (HRTEM) (f) images and SAED (e) pattern of bake-hardened ZMXA2110 sample which were obtain along the [101¯0]Mg zone axis
(g-i) atom maps (g), APT map of Mg and iso-concentration surface of 1.0%Ca (atomic fraction) (in cyan) (h), and concentration proxigram histogram corresponding to the iso-concentration surface in Fig.6h (i)
1 Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
王慧远, 张 行, 徐新宇 等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
2 Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
3 Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
刘 勇, 曾 钢, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
4 Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
5 Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
6 Zhu G J, Wang S Q, Zha M, et al. Effect of rare earth element Ce on the bulk texture and mechanical anisotropy of as-extruded Mg-0.3Al-0.2Ca-0.5Mn alloy sheets [J]. Acta Metall. Sin., 2024, 60: 1079
朱桂杰, 王思清, 查 敏 等. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响 [J]. 金属学报, 2024, 60: 1079
doi: 10.11900/0412.1961.2024.00044
7 Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
8 Wang S Q, Zha M, Jia H L, et al. A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms [J]. J. Mater. Sci. Technol., 2025, 211: 303
doi: 10.1016/j.jmst.2024.06.002
9 Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization [J]. J. Alloys Compd., 2020, 849: 156640
10 Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
11 Liu S, Wang C, Ning H, et al. Achieving high ductility and low in-plane anisotropy in magnesium alloy through a novel texture design strategy [J]. J. Magnesium Alloy., 2024, 12: 2863
12 Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
13 Bian M Z, Sasaki T T, Suh B C, et al. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability [J]. Scr. Mater., 2017, 138: 151
14 Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4 pmid: 29955065
15 Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
16 Tang H. Automotive Vehicle Assembly Processes and Operations Management [M]. Warrendale: SAE International, 2017: 135
17 Shome M, Tumuluru M. Welding and Joining of Advanced High Strength Steels (AHSS) [M]. Cambridge: Woodhead Publishing, 2015: 23
18 Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Amsterdam: Elsevier, 2017: 260
19 Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of Iron [J]. Proc. Phys. Soc., 1949, 62A: 49
20 Blavette D, Cadel E, Fraczkiewicz A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects [J]. Science, 1999, 286: 2317
pmid: 10600736
21 Zhu S, Li Z H, Yan L Z, et al. Effects of Zn addition on the natural ageing behavior and bake hardening response of a pre-aged Al-Mg-Si-Cu alloy [J]. Acta Metall. Sin., 2019, 55: 1395
朱 上, 李志辉, 闫丽珍 等. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响 [J]. 金属学报, 2019, 55: 1395
22 Wang H, Shi W, He Y L, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels [J]. Acta Metall. Sin., 2011, 47: 263
doi: 10.3724/SP.J.1037.2010.00693
王 华, 史 文, 何燕霖 等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究 [J]. 金属学报, 2011, 47: 263
23 Bryant J D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet [J]. Metall. Mater. Trans., 1999, 30: 1999
24 Hou Z R, Opitz T, Xiong X C, et al. Bake-partitioning in a press-hardening steel [J]. Scr. Mater., 2019, 162: 492
25 Aruga Y, Kozuka M, Takaki Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 116: 82
26 Soenen B, De A K, Vandeputte S, et al. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels [J]. Acta Mater., 2004, 52: 3483
27 Hu W W, Yang Z Q, Ye H Q. Cottrell atmospheres along dislocations in long-period stacking ordered phases in a Mg-Zn-Y alloy [J]. Scr. Mater., 2016, 117: 77
28 Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
29 Xiao L R, Chen X F, Wei K, et al. Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy [J]. Scr. Mater., 2021, 191: 219
30 Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
31 Hua Z M, Zha M, Meng Z Y, et al. Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 21
32 Li Y J, Fang Y, Wang C, et al. Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg-2Zn-0.5Ca alloy [J]. Mater. Sci. Eng., 2022, A831: 142239
33 Meng Z Y, Wang C, Hua Z M, et al. Achieving extraordinary thermal stability of fine-grained structure in a dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 797
34 Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
35 Klos A, Kellner S, Wortberg D, et al. Forming characteristics of artificial aging Al-Mg-Si-Cu sheet alloys [J]. AIP Conf. Proc., 2017, 1896: 020020
36 Tan S K, Pan X W, Li M, et al. Summary of steel sheet in Cherry Car Co. [J]. Automob. Technol. Mater., 2004, (6): 59
谭善锟, 潘兴旺, 李 明 等. 奇瑞轿车用钢板 [J]. 汽车工艺与材料, 2004, (6): 59
37 Yang M, Jia H L, Jiang R, et al. Excellent synergy of formability and strength of a Mg-Zn-Y-Ca-Zr alloy by tailoring segregation-assisted weak elliptical ring texture [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.06.029
38 Lejček P. Grain Boundary Segregation in Metals [M]. Berlin: Springer, 2010: 25
39 Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369 pmid: 23704567
40 He C, Li Z Q, Chen H W, et al. Unusual solute segregation phenomenon in coherent twin boundaries [J]. Nat. Commun., 2021, 12: 722
doi: 10.1038/s41467-021-21104-8 pmid: 33526770
41 Zhu Y M, Xu S W, Nie J F. $\left\{ 10\bar{1}1 \right\}$ twin boundary structures in a Mg-Gd alloy [J]. Acta Mater., 2018, 143: 1
42 Somekawa H, Watanabe H, Basha D A, et al. Effect of twin boundary segregation on damping properties in magnesium alloy [J]. Scr. Mater., 2017, 129: 35
43 Zhou X Z, Su H H, Ye H Q, et al. Removing basal-dissociated<c + a> dislocations by $\left\{ 10\bar{1}2 \right\}$ deformation twinning in magnesium alloys [J]. Acta Mater., 2021, 217: 117170
44 Wang C, Ju H, Li M X, et al. Segregation potency at $\left\{ 10\bar{1}2 \right\}$ and $\left\{ 10\bar{1}1 \right\}$ twin boundaries in Mg with Zn and Ca co-addition: A first-principles study [J]. Materialia, 2021, 15: 101031
45 Wang X, Hu Y, Yu K H, et al. Room temperature deformation-induced solute segregation and its impact on twin boundary mobility in a Mg-Y alloy [J]. Scr. Mater., 2022, 209: 114375
46 Zhang H, Li Y X, Ding Z G, et al. Origin of twin-like $\left\{ 33\bar{6}4 \right\}$ tilt boundary and associated solute segregation in a high strain rate deformed Mg-Y alloy [J]. Scr. Mater., 2021, 201: 113982
47 Su H H, Zheng S J, Yang Z Q, et al. Atomic-scale insights into grain boundary-mediated plasticity mechanisms in a magnesium alloy subjected to cyclic deformation [J]. Acta Mater., 2024, 277: 120210
48 Chen X F, Xiao L R, Ding Z G, et al. Atomic segregation at twin boundaries in a Mg-Ag alloy [J]. Scr. Mater., 2020, 178: 193
49 Somekawa H, Tsuru T, Naito K, et al. Control of twin boundary mobility by solute segregation in Mg binary alloys [J]. Scr. Mater., 2024, 249: 116173
50 Yang Q, Lv S H, Chen P, et al. Formation and solute segregation for an asymmetric tilt boundary on $\left\{ 10\bar{1}2 \right\}$ twin boundaries [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.01.026
51 Li Z H, Sasaki T T, Bian M Z, et al. Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys [J]. J. Alloys Compd., 2020, 847: 156347
52 Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
53 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
54 Lee Y S, Koh D H, Kim H W, et al. Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment [J]. Scr. Mater., 2018, 147: 45
55 Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys [J]. Scr. Mater., 1997, 37: 1475
56 Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
57 Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
58 Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
59 Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
60 Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
61 Nakata T, Mezaki T, Ajima R, et al. High-speed extrusion of heat-treatable Mg-Al-Ca-Mn dilute alloy [J]. Scr. Mater., 2015, 101: 28
62 Nakata T, Xu C, Matsumoto Y, et al. Optimization of Mn content for high strengths in high-speed extruded Mg-0.3Al-0.3Ca (wt%) dilute alloy [J]. Mater. Sci. Eng., 2016, 673A: 443
63 Nakata T, Xu C, Ajima R, et al. Improving mechanical properties and yield asymmetry in high-speed extrudable Mg-1.1Al-0.24Ca (wt%) alloy by high Mn addition [J]. Mater. Sci. Eng., 2018, A712: 12
64 Bian M Z, Zeng Z R, Xu S W, et al. Improving formability of Mg-Ca-Zr sheet alloy by microalloying of Zn [J]. Adv. Eng. Mater., 2016, 18: 1763
65 Nakata T, Xu C, Yoshida Y, et al. Improving room-temperature stretch formability of a high-alloyed Mg-Al-Ca-Mn alloy sheet by a high-temperature solution-treatment [J]. Mater. Sci. Eng., 2021, A801: 140399
66 Schäublin R E, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 239: 118223
67 Cheng D, Hoglund E R, Wang K, et al. Atomic structures of ordered monolayer GP zones in Mg-Zn-X (X = Ca, Nd) systems [J]. Scr. Mater., 2022, 216: 114744
68 Li Z H, Cheng D, Wang K, et al. Revisited precipitation process in dilute Mg-Ca-Zn alloys [J]. Acta Mater., 2023, 257: 119072
69 Meng Z Y, Jia H L, Ju H, et al. Enhanced age-hardening in a lean Mg-Al-Ca-Mn alloy by trace silver addition [J]. Mater. Res. Lett., 2025
70 Li Z H, Sasaki T T, Shiroyama T, et al. Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy [J]. Mater. Res. Lett., 2020, 8: 335
71 Bhattacharyya J J, Sasaki T T, Nakata T, et al. Determining the strength of GP zones in Mg alloy AXM10304, both parallel and perpendicular to the zone [J]. Acta Mater., 2019, 171: 231
doi: 10.1016/j.actamat.2019.04.035
72 Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
73 Bhattacharyya J J, Sasaki T T, Nakata T, et al. Why rolled Mg-Al-Ca-Mn alloys are less responsive to aging as compared to the extruded [J]. Scr. Mater., 2023, 233: 115513
74 Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
75 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
[1] FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. 金属学报, 2025, 61(3): 475-487.
[2] ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 361-371.
[3] HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 397-419.
[4] JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings[J]. 金属学报, 2025, 61(3): 383-396.
[5] ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. 金属学报, 2025, 61(3): 488-498.
[6] WANG Binshan, XU Guang, REN Rui, ZHANG Qiang, SHAN Zhaohui, FAN Jianfeng. Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion[J]. 金属学报, 2025, 61(1): 129-142.
[7] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[8] LIU Yong, ZENG Gang, LIU Hong, WANG Yu, LI Jianlong. Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr[J]. 金属学报, 2024, 60(2): 129-142.
[9] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[10] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[11] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[12] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[13] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[14] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[15] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
No Suggested Reading articles found!