Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 397-419    DOI: 10.11900/0412.1961.2024.00314
Overview Current Issue | Archive | Adv Search |
State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys
HUANG Ke(), LI Xinzhi, FANG Xuewei, LU Bingheng
School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys. Acta Metall Sin, 2025, 61(3): 397-419.

Download:  HTML  PDF(34416KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Wire arc additive manufacturing (WAAM) is a promising additive manufacturing process known for its high deposition efficiency and cost effectiveness, making it well-suited for the large-scale production of complex, lightweight magnesium alloy components. Despite these advantages, magnesium alloys present challenges owing to their low melting and boiling points and high thermal conductivity, which result in nonuniform microstructures, metallurgical defects, and residual stresses in WAAM-manufactured components. These issues notably reduce the reliability and service life of the components, making it difficult to meet the demanding requirements of high-end equipment applications. It presents a critical challenge that must be addressed. This review outlines the advantages and technical challenges of WAAM, providing a comprehensive overview of recent domestic and international research in five key areas: process types, forming quality, metallurgical defects, microstructure characteristics, and overall performance. In addition, the present study summarizes in situ modulation strategies besed on the liquid melt pool and solid interlayer, as well as heat treatment and surface strengthening methods, providing a theoretical framework for improving the quality of large and complex magnesium alloy components. Finally, this review discusses future trends and research directions in WAAM for magnesium alloys, with a focus on composition design, in situ modulation, post-treatment processes, and performance evaluation.

Key words:  wire-arc additive manufacturing      magnesium alloy      metallurgical defect      microstructure      comprehensive performance      modulation strategy     
Received:  06 September 2024     
ZTFLH:  TG669  
Fund: National Natural Science Foundation of China(523B2049);National Natural Science Foundation of China(52275374);National Natural Science Foundation of China(52205414)
Corresponding Authors:  HUANG Ke, professor, Tel: 13519183706, E-mail: ke.huang@xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00314     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/397

Fig.1  Wire arc additive manufacturing (WAAM) equipment[19] (a) and WAAM Mg alloy component[3] (b)
Fig.2  Technical challenges of WAAM Mg alloys
(a) metallurgical defects (BD—building direction, TD—travelling direction, ND—normal direction)[21,22]
(b) inhomogeneous microstructure (MPC—melt pool center, HAZ—heat affected zone, MPB—melt pool boundary)[23,24]
(c) mechanical properties[24,26]
Fig.3  Schematics of various WAAM technologies[27]
(a) gas tungsten arc welding (GTAW) (b) plasma arc welding (PAW)
(c) gas metal arc welding (GMAW) (d) cold metal transfer (CMT)
Fig. 4  Effect of printing parameters on the morphology of deposited single track[28]
Fig.5  Surface morphologies of single-pass multilayer deposited WE43 alloy components fabricated by four CMT arc modes[19](a) top view
(b-e) front views of CMT (b), CMT-Pulse (CMT-P) (c), CMT-Advance (CMT-ADV) (d), and CMT-Pulse + Advance (CMT-PADV) (e)

Fig.6  Distribution of defects in thin-walled parts of GW63K Mg alloy fabricated by WAAM[21]
Fig.7  Distributions of defects in thin-walled parts of AZ31 Mg alloy fabricated by WAAM[29]
(a) 100 A, 10 V, 400 mm/min (b) 100 A, 10 V, 600 mm/min (c) 100 A, 10 V, 800 mm/min
Fig.8  Distributions of oxide inclusions in the WE43 Mg alloy fabricated by WAAM[37]
(a) the 1st layer (b) the 16th layer (c) the 24th layer
Fig.9  Grain sizes and crystallographic orientations of the AZ31 Mg alloy fabricated by hot-roll (a), GTAW (b, d), and semi-continuously cast (c)[35,38]
Fig.10  Precipitation phase characteristics in the GW-series Mg alloy fabricated by cast (a), WAAM (b), and laser directed energy deposition (LDED) (c)[26]
Fig.11  Grain sizes sand crystallographic orientations in the AZ31 (a)[24] and GW102K (b)[26] Mg alloys fabricated by WAAM
Fig.12  Schematics showing the microstructure evolution with layer deposition during WAAM of WE43 alloy[37]
(a) the 1st layer (b) the 4th layer (c) the 15th layer (d) the top layer
AlloyDeposition processStateTensile direction

YS

MPa

UTS

MPa

EL

%

Ref.
Mg-3.12Al-0.84Zn-0.2MnGTAWADH10922320.3[35]
V9519113.8
AZ31GTAWADH5216211.8[42]
V13220117.2
Mg-2.98Al-0.93Zn-0.38MnGTAWADH9523921[29]
Mg-2.54Al-0.67Zn-0.44MnCMTADH8522628.3[31]
V12621117.2
Mg-2.54Al-0.67Zn-0.44MnCMTADH711527.5[30]
V13221110.6
Mg-2.5Al-0.82Zn-0.35MnCMTADH12022423.5[43]
V11321720.8
Mg-6.02Al-0.15Mn-0.88ZnGTAWAD-10526016[36]
Mg-7.6Al-0.25Mn-0.36Zn-0.15Ca-0.2YGTAWADH-28815[44]
V-22413
T6H-29216
V-28314
Mg-8.5Al-0.45Zn-0.03Mn-0.15Ca-0.2YGTAWADH14630815[32,45]
V11923712
AZ91DGTAWADH11324411.9[40]
V10824411.5
Mg-8.99Al-0.65Zn-0.26MnCMTADH-25017.5[33]
V-24516.3
Mg-4.26Gd-2.06Y-1.18Zn-0.36ZrCMTADH12322412.7[23]
V12122411.4
Mg-4.26Gd-2.06Y-1.18Zn-0.36ZrCMTT4H11723417.7[23]
V11422916.0
T6H15728817.1
V15728516.2
Mg-6.3Gd-2.6Y-0.4ZrGTAWADH1502328.3[21]
V1512378.9
T6V2183455.2
Mg-5.9Gd-2.8Y-0.7ZrCMTADH16226312.2[39]
V15925812.0
T4-15325717.9
T5H2273505.5
V2202385.7
T6-1993206.7
Mg-10.22Gd-2.14Y-0.43ZrCMTADH1492478.1[26]
V1512406.1
T4H12923814.6
V13224114.4
T6H2393714.0
V2433673.9
GWZ1031KGTAWADH1542718.7[25]
V1502473.3
T4H17028716.5
V16828512.7
T6H2153312.1
V2143372.7
Mg-4.08Y-2.11Nd-1.07Gd-0.54ZrGTAWADH1872575.2[37]
V1992718.1
Mg-3.82Y-2.46Nd-0.56ZrCMTADH15323310.4[41]
V14621110.3
Table 1  Room-temperature tensile properties of the as-deposited and heat-treated Mg alloys fabricated by WAAM under optimized process parameters[21,23,25,26,29-33,35-37,39-45]
Fig.13  Comparisons of potentiodynamic polarization curves for AZ31 Mg alloys prepared by WAAM process and conventional process
Fig.14  Damping capacities of the semi-continuously cast and GTAW-processed AZ31 Mg alloys as a function of strain amplitude[38] (Q—energy dissipation efficiency)
(a) 1 × 10-5-2 × 10-3 (b) 4.4 × 10-4-1.5 × 10-3
Fig.15  In situ modulation programs for other metallic materials during the WAAM process (TIG—tungsten inert gas)
(a) laser-arc hybrid additive manufacturing[50] (b) magnetic arc oscillation[49] (c) in situ rolling[51]
Fig.16  Current signals from ultrasonic frequency pulsed arc[52] (VP—variable polarity, UFPVP—ultrasonic frequency pulsed variable polarity, UFP—ultrasonic frequency pulsed)
Fig.17  Ultrasonic vibration-assisted WAAM equipment[54]
Fig.18  Effect of interlayer dwell time on the thermal profile[55] (Insets show the topographies of components)
(a) without interlayer waiting (b) with interlayer dwell time of 60 s
Fig.19  Equipment for interlayer strengthening-assisted WAAM
(a) interlayer hammering equipment[58]
(b) interlayer ultrasonic impact treatment[59]
(c) interlayer friction stir processing[60] (FSP)
Fig.20  Schematics illustrating the mechanisms of microstructure evolution during WAAM process and heat treatment[26]
(a) non-equilibrium solidification process (b) as-deposited sample
(c) solution treated sample (d) ageing treatment at 150 oC for 96 h
(e) ageing treatment at 200 oC for 58 h (f) ageing treatment at 250 oC for 16 h
Fig.21  Representative TEM characterization results of the laser shock peening treated specimen at depths of 10 μm (a, b), 30 μm (c, d), 100 μm (e, f), and 200 μm (g, h)[48] (NC—nanocrystallisation, SPD—severe plastic deformation, MPD—medium plastic deformation, DT—dislocation tangle, MT—mechanical twin, DW—dislocation wall)
1 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
3 Sui S, Guo S, Ma D, et al. Additive manufacturing of magnesium and its alloys: Process-formability-microstructure-performance relationship and underlying mechanism [J]. Int. J. Extrem. Manuf., 2023, 5: 042009
4 Gu D D, Shi X Y, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing [J]. Science, 2021, 372: eabg1487
5 Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
6 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
7 Li X Z, Fang X W, Chang T X, et al. Research progress in precise fabrication of lightweight magnesium alloys by selective laser melting [J]. J. Netshape Form. Eng., 2022, 14(4): 78
李新志, 方学伟, 常天行 等. 选区激光熔化精密成形轻质镁合金的研究进展 [J]. 精密成形工程, 2022, 14(4): 78
8 Li K, Ji C, Bai S W, et al. Selective laser melting of magnesium alloys: Necessity, formability, performance, optimization and applications [J]. J. Mater. Sci. Technol., 2023, 154: 65
doi: 10.1016/j.jmst.2022.12.053
9 Li X Z, Fang X W, Jiang X, et al. Additively manufactured high-performance AZ91D magnesium alloys with excellent strength and ductility via nanoparticles reinforcement [J]. Addit. Manuf., 2023, 69: 103550
10 Li X Z, Fang X W, Wang S P, et al. Selective laser melted AZ91D magnesium alloy with superior balance of strength and ductility [J]. J. Magnes. Alloy., 2023, 11: 4644
11 Zheng D D, Li Z, Jiang Y L, et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition [J]. Addit. Manuf., 2022, 57: 102957
12 Jiang Y L, Tang H B, Li Z, et al. Additive manufactured Mg-Gd-Y-Zr alloys: Effects of Gd content on microstructure evolution and mechanical properties [J]. Addit. Manuf., 2022, 59: 103136
13 Yi H, Wang Q, Cao H J. Wire-arc directed energy deposition of magnesium alloys: Microstructure, properties and quality optimization strategies [J]. J. Mater. Res. Technol., 2022, 20: 627
14 Wang Z, Fu B G, Wang Y F, et al. Research progress of additive manufacturing of magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 3093
王 哲, 付彬国, 王玉凤 等. 增材制造镁合金的研究进展 [J]. 中国有色金属学报, 2021, 31: 3093
15 Zhao Z X, Yan P F, Wu J, et al. Research progress of additive manufacturing magnesium alloy [J]. Chin. J. Nonferrous Met., 2023, 33: 2753
赵致先, 闫鹏飞, 吴 捷 等. 增材制造镁合金的研究现状与展望 [J]. 中国有色金属学报, 2023, 33: 2753
16 Zhang C H, Li Z, Zhang J K, et al. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives [J]. J. Magnes. Alloy., 2023, 11: 425
17 Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
18 Ansari N, Alabtah F G, Albakri M I, et al. Post processing of additive manufactured Mg alloys: Current status, challenges, and opportunities [J]. J. Magnes. Alloy., 2024, 12: 1283
19 Chen F K, Cai X Y, Dong B L, et al. Effect of process modes on microstructure and mechanical properties of CMT wire arc additive manufactured WE43 magnesium alloy [J]. J. Mater. Res. Technol., 2023, 27: 2089
20 Cao Q H, Qi B J, Zeng C Y, et al. Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc [J]. J. Alloys Compd., 2022, 909: 164742
21 Cao Q H, Zeng C Y, Qi B J, et al. Excellent isotropic mechanical properties of directed energy deposited Mg-Gd-Y-Zr alloys via establishing homogeneous equiaxed grains embedded with dispersed nano-precipitation [J]. Addit. Manuf., 2023, 67: 103498
22 Li X Z, Fang X W, Zhang M G, et al. Enhanced strength-ductility synergy of magnesium alloy fabricated by ultrasound assisted directed energy deposition [J]. J. Mater. Sci. Technol., 2024, 178: 247
doi: 10.1016/j.jmst.2023.09.021
23 Li X Z, Fang X W, Fang D Q, et al. On the excellent strength-ductility synergy of wire-arc directed energy deposited Mg-Gd-Y-Zn-Zr alloy via manipulating precipitates [J]. Addit. Manuf., 2023, 77: 103794
24 Li X Z, Zhang M G, Fang X W, et al. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode [J]. Virtual Phys. Prototyping, 2023, 18: e2170252
25 Cao Q H, Zeng C Y, Cai X Y, et al. High-strength Mg-10Gd-3Y-1Zn-0.5Zr alloy fabricated by wire-arc directed energy deposition: Phase transformation behavior and mechanical properties [J]. Addit. Manuf., 2023, 76: 103789
26 Li X Z, Fang X W, Zhang Z Y, et al. Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures [J]. Int. J. Extrem. Manuf., 2024, 6: 045001
27 Yi H, Yang L, Jia L, et al. Porosity in wire-arc directed energy deposition of aluminum alloys: Formation mechanisms, influencing factors and inhibition strategies [J]. Addit. Manuf., 2024, 84: 104108
28 Han S, Zielewski M, Martinez Holguin D, et al. Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing [J]. Appl. Sci., 2018, 8: 1306
29 Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing [J]. Addit. Manuf., 2018, 24: 498
30 Yang X, Liu J R, Wang Z N, et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process [J]. Mater. Sci. Eng., 2020, A774: 138742
31 Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior [J]. J. Mater. Process. Technol., 2021, 288: 116895
32 Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding [J]. J. Magnes. Alloy., 2021, 9: 192
33 Bi J, Shen J, Hu S, et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing [J]. Mater. Lett., 2020, 276: 128185
34 Zhang H, Hu S S, Wang Z J, et al. The effect of welding speed on microstructures of cold metal transfer deposited AZ31 magnesium alloy clad [J]. Mater. Des., 2015, 86: 894
35 Fang X W, Yang J N, Wang S P, et al. additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: Microstructure, mechanical property, and electromechanical corrosion performance [J]. J. Mater. Process. Technol., 2022, 300: 117430
36 Ying T, Zhao Z X, Yan P F, et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy [J]. Mater. Lett., 2022, 307: 131014
37 Tong X, Wu G H, Easton M A, et al. Microstructural evolution and strengthening mechanism of Mg-Y-RE-Zr alloy fabricated by quasi-directed energy deposition [J]. Addit. Manuf., 2023, 67: 103487
38 Wang Z H, Wang J F, Lin X, et al. Solidification microstructure evolution and its correlations with mechanical properties and damping capacities of Mg-Al-based alloy fabricated using wire and arc additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 144: 28
doi: 10.1016/j.jmst.2022.10.019
39 Ma D, Xu C J, Sui S, et al. Microstructure evolution and mechanical properties of wire arc additively manufactured Mg-Gd-Y-Zr alloy by post heat treatments [J]. Virtual Phys. Prototyping, 2023, 18: e2225492
40 Cai X Y, Chen F K, Dong B L, et al. Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy [J]. J. Magnes. Alloy., 2022, 12: 3180
41 Ma D, Xu C J, Qi Y S, et al. Achieving fully equiaxed grain microstructure and isotropic mechanical properties in wire arc additive-manufactured Mg-Y-Nd-Zr alloys [J]. J. Alloys Compd., 2023, 962: 171041
42 Wang Z H, Wang J F, Lin X, et al. Solidification texture dependence of the anisotropy of mechanical properties and damping capacities of an AZ31 Mg-based alloy fabricated via wire-arc additive manufacturing [J]. J. Mater. Res. Technol., 2023, 25: 2589
43 Manjhi S K, Sekar P, Bontha S, et al. Effect of equiaxed grains and secondary phase particles on mechanical properties and corrosion behaviour of CMT-based wire arc additive manufactured AZ31 Mg alloy [J]. CIRP J. Manuf. Sci. Technol., 2023, 46: 48
44 Guo Y Y, Quan G F, Celikin M, et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing [J]. J. Magnes. Alloy., 2022, 10: 1930
45 Guo Y Y, Pan H H, Ren L B, et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy [J]. Mater. Lett., 2019, 247: 4
46 Li J W, Qiu Y M, Yang J J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution [J]. J. Magnes. Alloy., 2023, 11: 217
47 Zhang Z, Wang L Q, Zhang R Z, et al. Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution [J]. J. Mater. Res. Technol., 2022, 18: 416
48 Li X Z, Fang X W, Zhang M G, et al. Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening [J]. Int. J. Mach. Tools Manuf., 2023, 188: 104029
49 Qiu Z J, Dong B S, Wu B T, et al. Tailoring the surface finish, dendritic microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy by magnetic arc oscillation [J]. Addit. Manuf., 2021, 48: 102397
50 Gong M C, Meng Y F, Zhang S, et al. Laser-arc hybrid additive manufacturing of stainless steel with beam oscillation [J]. Addit. Manuf., 2020, 33: 101180
51 Martina F, Roy M J, Szost B A, et al. Residual stress of as-deposited and rolled wire + arc additive manufacturing Ti-6Al-4V components [J]. Mater. Sci. Technol., 2016, 32: 1439
52 Cong B Q, Cai X Y, Qi Z W, et al. The effects of ultrasonic frequency pulsed arc on wire + arc additively manufactured high strength aluminum alloys [J]. Addit. Manuf., 2022, 51: 102617
53 Guo J, Zhou Y, Liu C M, et al. Wire Arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency [J]. Materials, 2016, 9: 823
54 Yi H, Wang Q, Zhang W J, et al. Wire-arc directed energy deposited Mg-Al alloy assisted by ultrasonic vibration: Improving properties via controlling grain structures [J]. J. Mater. Process. Technol., 2023, 321: 118134
55 Ma D, Xu C J, Sui S, et al. Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time [J]. J. Magnes. Alloy., 2023, 11: 4696
56 Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
57 Hai-Ou Z, Wang R, Liang L Y, et al. HDMR technology for the aircraft metal part [J]. Rapid Prototyping J., 2016, 22: 857
58 Fang X W, Yang J N, Jiang X, et al. Wire-arc directed energy deposited high-performance AZ31 magnesium alloy via a novel interlayer hammering treatment [J]. Mater. Sci. Eng., 2024, A889: 145864
59 Zhao X H, Ren B Q, Zhang Y W, et al. Microstructural evolution and strengthening mechanisms of CMT directed energy deposition-arc with interlayer ultrasonic impact treatment manufactured AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2023, A879: 145267
60 Wei J X, He C S, Qie M F, et al. Achieving high performance of wire arc additive manufactured Mg-Y-Nd alloy assisted by interlayer friction stir processing [J]. J. Mater. Process. Technol., 2023, 311: 117809
61 Graf G, Spoerk-Erdely P, Maawad E, et al. Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloy [J]. J. Magnes. Alloy., 2023, 11: 1944
62 Chen Y F, Zhang X C, Ding D H, et al. Integration of interlayer surface enhancement technologies into metal additive manufacturing: A review [J]. J. Mater. Sci. Technol., 2023, 165: 94
doi: 10.1016/j.jmst.2023.03.064
[1] WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. 金属学报, 2025, 61(3): 372-382.
[2] ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 361-371.
[3] JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings[J]. 金属学报, 2025, 61(3): 383-396.
[4] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[5] ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. 金属学报, 2025, 61(3): 488-498.
[6] FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. 金属学报, 2025, 61(3): 475-487.
[7] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[8] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
[9] WANG Qitao, LI Yanfen, ZHANG Jiarong, LI Yaozhi, FU Haiyang, LI Xinle, YAN Wei, SHAN Yiyin. Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature[J]. 金属学报, 2025, 61(2): 323-335.
[10] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[11] HAN Qifei, DI Xinglong, GUO Yueling, YE Shuijun, ZHENG Yuanxuan, LIU Changmeng. Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2025, 61(2): 211-225.
[12] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[13] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[14] WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. 金属学报, 2025, 61(1): 1-11.
[15] LI Junjie, LI Panyue, HUANG Liqing, GUO Jie, WU Jingyang, FAN Kai, WANG Jincheng. Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot[J]. 金属学报, 2025, 61(1): 12-28.
No Suggested Reading articles found!