Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 129-142    DOI: 10.11900/0412.1961.2024.00256
Research paper Current Issue | Archive | Adv Search |
Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion
WANG Binshan1,2, XU Guang1,2, REN Rui1,2, ZHANG Qiang1,2,3, SHAN Zhaohui4, FAN Jianfeng1,2,3()
1 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 Shanxi Key Laboratory of Advanced Magnesium Based Materials, Taiyuan University of Technology, Taiyuan 030024, China
4 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

WANG Binshan, XU Guang, REN Rui, ZHANG Qiang, SHAN Zhaohui, FAN Jianfeng. Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion. Acta Metall Sin, 2025, 61(1): 129-142.

Download:  HTML  PDF(5078KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electropulse-assisted forming process has been widely used in various plastic deformation applications owing to its advantages in improving formability and refining microstructure. However, the influence of electropulse on the dynamic extrusion deformation process remains unclear. In this study, the effects of electropulse on dynamic precipitation and microstructure evolution of AZ91 magnesium alloy during extrusion were investigated using electropulse-assisted extrusion (EPAE) technology. The results demonstrate that under critical deformation conditions for complete dynamic recrystallization, the EPAE process reduces the volume fraction of the β-Mg17Al12 phase, promotes its spheroidization, and enhances both the average grain size and the maximum basal texture intensity. These effects become more pronounced with increasing peak current density. Specifically, with a peak current density of 6.4 × 107 A/m2 during the EPAE process, the volume fraction of the β-Mg17Al12 phase decreased from 76.9% to 16.5%, the average grain size increased from 1.07 μm to 3.54 μm, and the maximum basal texture intensity increased from 3.39 to 5.92, compared to conventional hot extrusion. The bimodal structure observed in the EPAE-processed AZ91 alloy was attributed to the pinning effect caused by the inhomogeneous distribution of the β-Mg17Al12 phase. Experimental and theoretical analyses indicated that the increase of Gibbs free energy variation and atomic diffusion flux during extrusion of AZ91 alloy caused by the combined thermal and athermal effects of the pulsed current was the main reason for the experimental phenomena, which promoting the solution of β-Mg17Al12 phase and uniform distribution of Al solute atoms nearby while also increasing the grain boundary migration rate. Moreover, the electropulse strengthened the basal texture in β-Mg17Al12 particle-depleted regions by accelerating basal <a> slip.

Key words:  AZ91 magnesium alloy      electropulse assisted extrusion      β-Mg17Al12 phase      dynamic precipitation      grain growth     
Received:  14 August 2024     
ZTFLH:  TG146.2  
Fund: Natural Science Foundation of Shanxi Province(20210302123134);Natural Science Foundation of Shanxi Province(202203021221071);Natural Science Foundation of Shanxi Province(202203021211157);Shanxi Scholarship Council of China(2022-045);Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-FR005)
Corresponding Authors:  FAN Jianfeng, professor, Tel: 13935107463, E-mail: fanjianfeng@tyut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00256     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/129

Fig.1  Schematic of the EPAE process and square wave generated by electric pulsing (EPAE—electropulse-assisted extrusion, ED—extrusion direction, Jm—peak pulse current density, τp—pulse width, τs—pulse spacing)

Sample

Ram

velocity

mm·s-1

Extrusion

ratio

Frequency

Hz

Duration

μs

Current intensity

A

Current density

107 A·m-2

Duty

ratio

250EX116∶1-----
EPAE-1116∶1100050106673.40.05
EPAE-2116∶1100050160005.10.05
EPAE-3116∶1100050200786.40.05
Table 1  The extrude process parameters of AZ91 magnesium alloy
Fig.2  OM (a, c) and SEM-BSE (b, d) images of the as-cast (a, b) and as-soluted (c, d) AZ91 magnesium alloys (Inset in Fig.2d shows the EDS results, xM —atomic fraction of element M)
Fig.3  XRD spectra (a) and evolution of dislocation density (b) of as-soluted and extruded AZ91 magnesium alloys
Fig.4  Low (a-d) and high (e-h) magnification OM images and SEM-BSE images (i-l) of the extrude AZ91 magnesium alloy samples (The black dashed areas in Figs.4b-d are coarse-grained areas, and the black arrows in Figs.4f-h are long-strip second phases)
(a, e, i) 250EX (b, f, j) EPAE-1 (c, g, k) EPAE-2 (d, h, l) EPAE-3
Sampledavg / μmdfg / μmdcg / μmfcg / %fβ / %dβav / μmrafβ / rTp / oC
250EX1.07---76.90.482.733.20270
EPAE-11.771.751.9309.154.80.525.122.11309
EPAE-22.091.973.0511.240.20.411.761.96320
EPAE-33.542.377.2324.516.50.501.330.66345
Table 2  Microstructural parameters and post-temperature of extruded AZ91 magnesium alloys
Fig.5  Evolutions of average size and proportion of different types of grains (a) and β-Mg17Al12 phase (b) in extruded AZ91 magnesium alloy
Fig.6  SEM-SE images (a, b, d-l) and EDS results (c) of the 250EX (a, b), EPAE-1 (d-f), EPAE-2 (g-i), and EPAE-3 (j-l) AZ91 magnesium alloy samples
(a, d, g, j) SEM-SE images of fine grain region (b, e, h, k) SEM-SE images of the whole region (f, i, l) SEM-SE images of coarse grain region
Fig.7  SEM-SE image of the transition region from fine grain to coarse grain (a) and TEM image of fine grain region (b) of the EPAE-3 sample (The black dotted line in Fig.7b is the grain boundary)
Fig.8  Typical EBSD results of 250EX alloy (a-c) and EPAE-3 alloy (d-f) (TD—transverse direction, fLAGB—fraction of low angle grain boundary)
(a, d) invers pole figures (IPFs) (b, e) (0001) pole figures (PFs) (c, f) grain boundary misorientation angle distributions
Fig.9  True stress-strain curves of as-soluted and extruded samples at room temperature
Sampleσy / MPaσs / MPaδ / %
As-soluted811506.8
250EX3014289.8
EPAE-131844011.2
EPAE-226742913.4
EPAE-324040613.7
Table 3  Mechanical properties of as-soluted and extruded AZ91 alloys
Fig.10  Schematic of Gibbs free energy changes during solution of β-Mg17Al12 phase under different extrusion conditions (ΔGd—thedifference in free energy between state 0 and state 1 in Curve 1, ΔG—thedifference in free energy between state 0 and state 1 in Curve 2, ΔGe—additional energy change caused by pulse current)
Fig.11  Typical EBSD results of EPAE-3 sample in coarse grain region (a, b) and fine grain region (c, d)
(a, c) IPFs (b, d) (0001) PFs
1 Aghion E, Bronfin B. Magnesium alloys development towards the 21st century[J]. Mater. Sci. Forum, 2000, 350-351: 19
2 Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
3 Chen X H, Pan F S, Mao J J, et al. Effect of heat treatment on strain hardening of ZK60 Mg alloy[J]. Mater. Des., 2011, 32: 1526
4 Xu Q, Tang G Y, Jiang Y B. Thermal and electromigration effects of electropulsing on dynamic recrystallization in Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2011, A528: 4431
5 Wang S N. Effect of electric pulses on drawability and corrosion property of AZ31 magnesium alloy[D]. Beijing: Tsinghua University, 2009
王少楠. 电脉冲对AZ31镁合金冲压性能和腐蚀性能的影响[D]. 北京: 清华大学, 2009
6 Shan Z H, Yang J, Fan J F, et al. Extraordinary mechanical properties of AZ61 alloy processed by ECAP with 160° channel angle and EPT[J]. J. Magnes. Alloy., 2021, 9: 548
7 Jiang L Y, Zhang D F, Fan X W, et al. Microstructure and mechanical properties of as-extruded AZ80-xSn magnesium alloys[J]. Mater. Sci. Technol., 2016, 32: 1838
8 Stanford N, Atwell D. The effect of Mn-rich precipitates on the strength of AZ31 extrudates[J]. Metall. Mater. Trans., 2013, 44A: 4830
9 Moreau G, Cornet J A, Calais D. Acceleration de la diffusion chimique sous irradiation dans le systeme aluminium-magnesium[J]. J. Nucl. Mater., 1971, 38: 197
10 Zhu T P, Chen Z W, Gao W. Dissolution of eutectic β-Mg17Al12 phase in magnesium AZ91 cast alloy at temperatures close to eutectic temperature[J]. J. Mater. Eng. Perform., 2010, 19: 860
11 Shan Z H, Yang J, Fan J F, et al. Microstructure evolution and mechanical properties of an AZ61 alloy processed with TS-ECAP and EPT[J]. Mater. Sci. Eng., 2020, A780: 139195
12 Godfrey A, Cao W Q, Liu Q, et al. Stored energy, microstructure, and flow stress of deformed metals[J]. Metall. Mater. Trans., 2005, 36A: 2371
13 Lin B Y, Zhang H, Meng Y P, et al. Deformation behavior, microstructure evolution, and dynamic recrystallization mechanism of an AZ31 Mg alloy under high-throughput gradient thermal compression[J]. Mater. Sci. Eng., 2022, A847: 143338
14 Xu H, Liu M, Wang Y P, et al. Refined microstructure and dispersed precipitates in a gradient rolled AZ91 alloy under pulsed current[J]. Materialia, 2021, 20: 101245
15 Jeong H J, Kim M J, Park J W, et al. Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy[J]. Mater. Sci. Eng., 2017, A684: 668
16 Shan Z H, Zhang Y X, Wang B S, et al. Microstructural evolution and precipitate behavior of an AZ61 alloy plate processed with ECAP and electropulsing treatment[J]. J. Mater. Res. Technol., 2022, 19: 382
17 Qin R S, Samuel E I, Bhowmik A. Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels[J]. J. Mater. Sci., 2011, 46: 2838
18 Conrad H. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid[J]. Mater. Sci. Eng., 2000, A287: 205
19 Qin R S, Zhou B L. Effect of electric current pulses on grain size in castings[J]. Int. J. Non-Equilib. Process., 1998, 11: 77
20 Wang X L, Guo J D, Wang Y M, et al. Segregation of lead in Cu-Zn alloy under electric current pulses[J]. Appl. Phys. Lett., 2006, 89: 061910
21 Jiang Y B, Tang G Y, Shek C, et al. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip[J]. Appl. Phys., 2009, 97A: 607
22 Onodera Y, Hirano K. The effect of a.c. frequency on precipitation in Al-5.6 at % Zn[J]. J. Mater. Sci., 1984, 19: 3935
23 Sprecher A F, Mannan S L, Conrad H. On the temperature rise associated with the electroplastic effect in titanium[J]. Scr. Metall., 1983, 17: 769
24 Porter D A, Easterling K E, Sherif M Y. Phase Transformations in Metals and Alloys (Revised Reprint)[M]. 3rd Ed., Boca Raton: CRC Press, 2009: 312
25 Nabarro F R N. Dislocations in Solids[M]. Amsterdam: Elsevier, 1989: 499
26 Sprecher A F, Mannan S L, Conrad H. Overview no. 49: On the mechanisms for the electroplastic effect in metals[J]. Acta Metall., 1986, 34: 1145
27 Kim S H, You B S, Park S H. Effect of billet diameter on hot extrusion behavior of Mg-Al-Zn alloys and its influence on microstructure and mechanical properties[J]. J. Alloys Compd., 2017, 690: 417
28 Braszczyńska-Malik K N. Spherical shape of γ-Mg17Al12 precipitates in AZ91 magnesium alloy processed by equal-channel angular pressing[J]. J. Alloys Compd., 2009, 487: 263
29 Lee S W, Han G, Jun T S, et al. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy[J]. J. Mater. Sci. Technol., 2021, 66: 139
doi: 10.1016/j.jmst.2020.04.074
30 Di H S, Zhang X M, Wang G D, et al. Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high-speed steel[J]. J. Mater. Process. Technol., 2005, 166: 359
31 Huang K, Marthinsen K, Zhao Q L, et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284
32 Shi D K. Fundamentals of Materials Science[M]. 2nd Ed., Beijing: China Machine Press, 2003: 363
石德珂. 材料科学基础[M]. 第2版, 北京: 机械工业出版社, 2003: 363
33 Guo F, Zhang D F, Yang X S, et al. Strain-induced dynamic precipitation of Mg17Al12 phases in Mg-8Al alloys sheets rolled at 748 K[J]. Mater. Sci. Eng., 2015, A636: 516
34 Yan T L, Pei D, Cheng M H, et al. Development of Mg-6Al-4Sn-1Zn alloy sheets with ultra-high strength by combining extrusion and high-speed rolling[J]. J. Mater. Res. Technol., 2024, 29: 1487
35 Zhang Q, Li Q A, Chen X Y, et al. Dynamic precipitation and recrystallization mechanism during hot compression of Mg-Gd-Y-Zr alloy[J]. J. Mater. Res. Technol., 2021, 15: 37
doi: 10.1016/j.jmrt.2021.08.013
36 Okazaki K, Kagawa M, Conrad H. A study of the electroplastic effect in metals[J]. Scr. Metall., 1978, 12: 1063
37 Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic effect in metals[J]. Scr. Metall., 1979, 13: 277
38 Xiang S Q, Zhang X F. Dislocation structure evolution under electroplastic effect[J]. Mater. Sci. Eng., 2019, A761: 138026
39 Bhattacharyya J J, Agnew S R, Muralidharan G. Texture enhancement during grain growth of magnesium alloy AZ31B[J]. Acta Mater., 2015, 86: 80
[1] FENG Xiaozheng, WANG Weiguo, Gregory S. Rohrer, CHEN Song, HONG Lihua, LIN Yan, WANG Zongpu, ZHOU Bangxin. Effects of Grain Growth on the {111}/{111} Near Singular Boundaries in High Purity Aluminum[J]. 金属学报, 2024, 60(1): 80-94.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[4] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[5] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[6] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[7] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[8] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[9] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[10] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[11] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[12] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[13] ZHANG Jinling1,2,3, FENG Zhiyong1, HU Lanqing1,2,3,WANG Shebin1,2,3, XU Bingshe1,2,3. PRECIPITATION BEHAVIOR OF AZ91 MAGNESIUM ALLOYS WITH DIFFERENT La CONTENTS[J]. 金属学报, 2012, 48(5): 607-614.
[14] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[15] ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. 金属学报, 2012, 48(2): 227-234.
No Suggested Reading articles found!