|
|
Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr |
LIU Yong( ), ZENG Gang, LIU Hong, WANG Yu, LI Jianlong |
Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
|
Cite this article:
LIU Yong, ZENG Gang, LIU Hong, WANG Yu, LI Jianlong. Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr. Acta Metall Sin, 2024, 60(2): 129-142.
|
Abstract Grain refinement stands out as the primary strengthening mechanism in magnesium alloys. Zr emerges as the most effective grain refiner for magnesium alloys in the absence of Al, Si, etc. Typically, Zr is introduced in the form of an Mg-Zr master alloy. The crucial factor for achieving effective grain refinement in magnesium alloys incorporating Zr lies in regulating the morphology of Zr elements in the Mg-Zr master alloy, distinguishing between particle Zr and solute Zr. This study presents the theoretical groundwork for grain refinement. Drawing upon the growth restriction theory and heterogeneous nucleation theory, the refinement mechanism of soluble Zr and particle Zr on magnesium alloys is discussed. The discussion also identifies the engineering application bottleneck associated with Zr-refined magnesium alloys. A comprehensive review of advancements in Zr-refined magnesium alloy research is conducted, encompassing particle Zr and solute Zr. This review highlights the synergistic design strategy proposed for Zr-refined magnesium alloys. Ultimately, the anticipated development trends for Zr-refined magnesium alloys is prospected.
|
Received: 02 June 2023
|
|
Fund: National Key Research and Development Program of China(2021YFB3501001);National Natural Science Foundation of China(52061028);Major Research and Development Projects of Jiangxi Province(20223BBE51021) |
Corresponding Authors:
LIU Yong, professor, Tel: 13576087535, E-mail: liuyong@ncu.edu.cn
|
1 |
Li G, Qu W Y, Luo M, et al. Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3255
doi: 10.1016/S1003-6326(21)65729-1
|
2 |
Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
|
3 |
Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716
pmid: 29371467
|
4 |
Zhang Y, Rong W, Wu Y J, et al. A comparative study of the role of Ag in microstructures and mechanical properties of Mg-Gd and Mg-Y alloys [J]. Mater. Sci. Eng., 2018, A731: 609
|
5 |
Wang L S, Jiang J H, Saleh B, et al. Controlling corrosion resistance of a biodegradable Mg-Y-Zn alloy with LPSO phases via multi-pass ECAP process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1180
doi: 10.1007/s40195-020-01042-y
|
6 |
Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
|
|
曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
|
7 |
Xiong J P, Liu Y. Research progress in interfacial regulation of magnesium matrix composites [J]. J. Mater. Eng., 2023, 51(1): 1
doi: 10.11868/j.issn.1001-4381.2021.001213
|
|
熊京鹏, 刘 勇. 镁基复合材料界面调控研究进展 [J]. 材料工程, 2023, 51(1): 1
doi: 10.11868/j.issn.1001-4381.2021.001213
|
8 |
Zhou M H, Xu Y H, Liu Y, et al. Microstructures and mechanical properties of Mg-15Gd-1Zn-0.4 Zr alloys treated by ultrasonic surface rolling process [J]. Mater. Sci. Eng., 2021, A828: 141881
|
9 |
Cheng Y F, Du W B, Liu K, et al. Mechanical properties and corrosion behaviors of Mg-4Zn-0.2Mn-0.2Ca alloy after long term in vitro degradation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 363
doi: 10.1016/S1003-6326(20)65218-9
|
10 |
Yan C J, Guan B, Xin Y C, et al. Mechanical and corrosion behavior of a biomedical Mg-6Zn-0.5Zr alloy containing a large number of twins [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 439
doi: 10.1007/s40195-022-01480-w
|
11 |
Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
|
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
12 |
Liang J W, Lei Z L, Chen Y B, et al. Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2022, A839: 142858
|
13 |
Wang T, Yang L, Tang Z F, et al. Microstructure, mechanical properties and deformation mechanism of powder metallurgy AZ31 magnesium alloy during rolling [J]. Mater. Sci. Eng., 2022, A844: 143042
|
14 |
Zhou B J, Li Y J, Wang L Y, et al. The role of grain boundary plane in slip transfer during deformation of magnesium alloys [J]. Acta Mater., 2022, 227: 117662
doi: 10.1016/j.actamat.2022.117662
|
15 |
Tian J, Deng J F, Chang Y Y, et al. A study of unstable fracture of a magnesium alloy caused by uneven microstructure [J]. Mater. Lett., 2022, 314: 131799
doi: 10.1016/j.matlet.2022.131799
|
16 |
Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
|
17 |
Easton M, Stjohn D. An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles [J]. Metall. Mater. Trans., 2005, 36A: 1911
|
18 |
StJohn D H, Cao P, Qian M, et al. A new analytical approach to reveal the mechanisms of grain refinement [J]. Adv. Eng. Mater., 2007, 9: 739
doi: 10.1002/adem.v9:9
|
19 |
Barnett M R, Beer A G, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3A1-1Zn [J]. Scr. Mater., 2004, 51: 19
doi: 10.1016/j.scriptamat.2004.03.023
|
20 |
Patel V, Li W Y, Andersson J, et al. Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing [J]. J. Mater. Res. Technol., 2022, 17: 3150
doi: 10.1016/j.jmrt.2022.02.059
|
21 |
Golrang M, Mobasheri M, Mirzadeh H, et al. Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5Ca-0.5RE magnesium alloy [J]. J. Alloys Compd., 2020, 815: 152380
doi: 10.1016/j.jallcom.2019.152380
|
22 |
Liu X, Yin S Q, Zhang Z Q, et al. Effect of limestone ores on grain refinement of as-cast commercial AZ31 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1103
doi: 10.1016/S1003-6326(18)64746-6
|
23 |
Zhu S Q, Ringer S P. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys [J]. Acta Mater., 2018, 144: 365
doi: 10.1016/j.actamat.2017.11.004
|
24 |
Robson J D, Paa-Rai C. The interaction of grain refinement and ageing in magnesium-zinc-zirconium (ZK) alloys [J]. Acta Mater., 2015, 95: 10
doi: 10.1016/j.actamat.2015.05.012
|
25 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
|
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
26 |
Li L H, Liu W H, Qi F G, et al. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—A review [J]. J. Magnes. Alloy., 2022, 10: 2334
|
27 |
Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. J. Magnes. Alloy., 2022, 10: 1191
|
28 |
Wang Z Y, Chen X H, Shu Y K, et al. Microstructure, texture, and mechanical properties of Mg-Zn-Y-Nd-Zr alloys [J]. Rare Met. Mater. Eng., 2022, 51: 3138
|
|
王子怡, 陈先华, 舒彦凯 等. Mg-Zn-Y-Nd-Zr合金的显微组织、织构、力学性能(英文) [J]. 稀有金属材料与工程, 2022, 51: 3138
|
29 |
Shi Q Y, Natarajan A R, Van der Ven A, et al. Partitioning of Ca to metastable precipitates in a Mg-rare earth alloy [J]. Mater. Res. Lett., 2023, 11: 222
doi: 10.1080/21663831.2022.2138724
|
30 |
Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
|
31 |
Johnsson M, Bäckerud L. The influence of composition on equiaxed crystal growth mechanisms and grain size in Al alloys [J]. Int. J. Mater. Res., 1996, 87: 216
doi: 10.1515/ijmr-1996-870312
|
32 |
Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
doi: 10.1016/j.matdes.2015.08.026
|
33 |
Li J L, Chen R S, Ma Y Q, et al. Hot tearing of sand cast Mg-5wt.% Y-4wt.% RE (WE54) alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 728
doi: 10.1007/s40195-013-0230-9
|
34 |
Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
|
35 |
Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
doi: 10.1016/j.matlet.2018.07.037
|
36 |
Rathi S K, Sharma A, Di Sabatino M. Effect of mould temperature, grain refinement and modification on hot tearing test in Al-7Si-3Cu alloy [J]. Eng. Fail. Anal., 2017, 79: 592
doi: 10.1016/j.engfailanal.2017.04.037
|
37 |
Easton M, Grandfield J F, StJohn D H, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
doi: 10.4028/www.scientific.net/MSF.519-521
|
38 |
Uludağ M, Çetin R, Dispinar D, et al. The effects of degassing, grain refinement & Sr-addition on melt quality-hot tear sensitivity relationships in cast A380 aluminum alloy [J]. Eng. Fail. Anal., 2018, 90: 90
doi: 10.1016/j.engfailanal.2018.03.025
|
39 |
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
|
40 |
Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 907
doi: 10.1016/S1003-6326(14)63142-3
|
41 |
Davis T A, Bichler L, D'Elia F, et al. Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy [J]. J. Alloys Compd., 2018, 759: 70
doi: 10.1016/j.jallcom.2018.05.129
|
42 |
Xing F J, Guo F, Su J, et al. The existing forms of Zr in Mg-Zn-Zr magnesium alloys and its grain refinement mechanism [J]. Mater. Res. Express, 2021, 8: 066516
|
43 |
Wu G H, Sun M, Dai J C, et al. Study on the grain refinement behavior of Mg-Zr master alloy and Zr containing compounds in Mg-10Gd-3Y magnesium alloy [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 181
|
44 |
StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application [J]. Metall. Mater. Trans., 2013, 44A: 2935
|
45 |
StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
|
46 |
Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
doi: 10.1016/j.jallcom.2014.09.061
|
47 |
Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains [J]. Scr. Mater., 2006, 54: 881
doi: 10.1016/j.scriptamat.2005.11.002
|
48 |
Sun M, StJohn D H, Easton M A, et al. Effect of cooling rate on the grain refinement of Mg-Y-Zr alloys [J]. Metall. Mater. Trans., 2020, 51A: 482
|
49 |
Balasubramani N, Wang G, Easton M A, et al. A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys [J]. J. Magnes. Alloy., 2021, 9: 829
|
50 |
Sun M, Wu G H, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Mater. Sci. Eng., 2009, A523: 145
|
51 |
Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys [J]. Mater. Trans., 1993, 24A: 481
|
52 |
Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
doi: 10.1016/S1359-6454(00)00094-X
|
53 |
StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
|
54 |
Zhang M X, Kelly P M, Qian M, et al. Crystallography of grain refinement in Mg-Al based alloys [J]. Acta Mater., 2005, 53: 3261
doi: 10.1016/j.actamat.2005.03.030
|
55 |
Qiu D, Zhang M X, Fu H M, et al. Crystallography of recently developed grain refiners for Mg-Al alloys [J]. Philos. Mag. Lett., 2007, 87: 505
doi: 10.1080/09500830701253151
|
56 |
Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
doi: 10.1016/j.actamat.2009.03.011
|
57 |
Fu H M, Zhang M X, Qiu D, et al. Grain refinement by AlN particles in Mg-Al based alloys [J]. J. Alloys Compd., 2009, 478: 809
doi: 10.1016/j.jallcom.2008.12.029
|
58 |
Lee Y C, Dahle A K, StJohn D H. The role of solute in grain refinement of magnesium [J]. Metall. Mater. Trans., 2000, 31A: 2895
|
59 |
Easton M, StJohn D. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—A review of the literature [J]. Metall. Mater. Trans., 1999, 30A: 1613
|
60 |
Men H, Fan Z. Effects of solute content on grain refinement in an isothermal melt [J]. Acta Mater., 2011, 59: 2704
doi: 10.1016/j.actamat.2011.01.008
|
61 |
Schmid-Fetzer R, Kozlov A. Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification [J]. Acta Mater., 2011, 59: 6133
doi: 10.1016/j.actamat.2011.06.026
|
62 |
Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
|
63 |
Günther R, Hartig C, Bormann R. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment [J]. Acta Mater., 2006, 54: 5591
doi: 10.1016/j.actamat.2006.07.035
|
64 |
Li Y J, Tang A T. Recent development of grain refining technologies for magnesium alloys [J]. Mater. Rev., 2013, 27(17): 125
|
|
李玉娟, 汤爱涛. 镁合金晶粒细化的研究进展 [J]. 材料导报, 2013, 27(17): 125
|
65 |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
doi: 10.1007/BF02642799
|
66 |
Turnbull D, Vonnegut B. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44: 1292
doi: 10.1021/ie50510a031
|
67 |
Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys [J]. Mater. Lett., 2002, 56: 53
doi: 10.1016/S0167-577X(02)00417-2
|
68 |
Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys [J]. Scr. Mater., 2005, 53: 517
doi: 10.1016/j.scriptamat.2005.05.008
|
69 |
Saunders W P, Strieter F P. Alloying zirconium to magnesium [J]. Trans. Am. Foundrymen's Soc., 1952, 60: 581
|
70 |
Qian M, StJohn D H, Frost M T. Characteristic zirconium-rich coring structures in Mg-Zr alloys [J]. Scr. Mater., 2002, 46: 649
doi: 10.1016/S1359-6462(02)00046-5
|
71 |
Sun M. Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012
|
|
孙 明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012
|
72 |
Qian M, StJohn D H, Frost M T. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 593
doi: 10.4028/www.scientific.net/MSF.419-422
|
73 |
Qian M, Hildebrand Z C G, StJohn D H. The loss of dissolved zirconium in zirconium-refined magnesium alloys after remelting [J]. Metall. Mater. Trans., 2009, 40A: 2470
|
74 |
Sun M, Easton M A, StJohn D H, et al. Grain refinement of magnesium alloys by Mg-Zr master alloys: The role of alloy chemistry and Zr particle number density [J]. Adv. Eng. Mater., 2013, 15: 373
doi: 10.1002/adem.v15.5
|
75 |
Qian M, StJohn D H, Frost M T. Heterogeneous nuclei size in magnesium-zirconium alloys [J]. Scr. Mater., 2004, 50: 1115
doi: 10.1016/j.scriptamat.2004.01.026
|
76 |
Liu T, Wang X G, Li W L, et al. Genetic effects of Mg-Zr master alloy in extruded thick sheets of ZK60 magnesium alloy [J]. Mater. Lett., 2023, 339: 134084
doi: 10.1016/j.matlet.2023.134084
|
77 |
Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 126
|
78 |
Tian Q. Grain refining mechanism and influencing factors of Mg-Re-Zr alloys [D]. Harbin:Harbin Institute of Technology, 2011
|
|
田 倩. Mg-RE-Zr合金的细化机理及影响因素的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
|
79 |
Qian M. Heterogeneous nucleation on potent spherical substrates during solidification [J]. Acta Mater., 2007, 55: 943
doi: 10.1016/j.actamat.2006.09.016
|
80 |
Tong X, Wu G H, Easton M A, et al. Exceptional grain refinement of Mg-Zr master alloy treated by tungsten inert gas arc re-melting with ultra-high frequency pulses [J]. Scr. Mater., 2022, 215: 114700
doi: 10.1016/j.scriptamat.2022.114700
|
81 |
Saha P, Viswanathan S. An analysis of the grain refinement of magnesium by zirconium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 175
|
82 |
Pang S. Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
|
庞 松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015
|
83 |
Qian M, Zheng L, Graham D, et al. Settling of undissolved zirconium particles in pure magnesium melts [J]. J. Light Met., 2001, 1: 157
doi: 10.1016/S1471-5317(01)00009-8
|
84 |
Qian M, StJohn D, Frost M, et al. Grain refinement of pure magnesium using rolled Zirmax® master alloy (MG-33.3 ZR) [A]. Magnesium Technology 2003 [C]. Warrendale: TMS, 2003: 215
|
85 |
Vargas M, Lathabai S, Uggowitzer P J, et al. Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50 [J]. Mater. Sci. Eng., 2017, A685: 253
|
86 |
Wang C Q, Sun M, Zheng F Y, et al. Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing [J]. J. Magnes. Alloy., 2014, 2: 239
|
87 |
Viswanathan S, Saha P, Foley D, et al. Engineering a more efficient zirconium grain refiner for magnesium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 559
|
88 |
Das S, Barekar N, El Fakir O, et al. Influence of intensive melt shearing on subsequent hot rolling and the mechanical properties of twin roll cast AZ31 strips [J]. Mater. Lett., 2015, 144: 54
doi: 10.1016/j.matlet.2015.01.017
|
89 |
Aarabi H, Alizadeh M. Improvement of microstructure and corrosion properties of AA7075 Al alloy by melt shearing process [J]. Mater. Lett., 2020, 275: 128085
doi: 10.1016/j.matlet.2020.128085
|
90 |
Peng G S, Wang Y, Chen K H, et al. Improved Zr grain refining efficiency for commercial purity Mg via intensive melt shearing [J]. Int. J. Cast Met. Res., 2017, 30: 374
doi: 10.1080/13640461.2017.1317393
|
91 |
Balasubramani N, StJohn D, Dargusch M, et al. Ultrasonic processing for structure refinement: An overview of mechanisms and application of the interdependence theory [J]. Materials, 2019, 12: 3187
doi: 10.3390/ma12193187
|
92 |
Tong X, You G Q, Wang Y C, et al. Effect of ultrasonic treatment on segregation and mechanical properties of as-cast Mg-Gd binary alloys [J]. Mater. Sci. Eng., 2018, A731: 44
|
93 |
Nagasivamuni B, Wang G, StJohn D H, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo-and hyper-peritectic compositions [J]. J. Cryst. Growth, 2019, 512: 20
doi: 10.1016/j.jcrysgro.2019.02.004
|
94 |
Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
doi: 10.1016/j.jallcom.2016.07.280
|
95 |
Wang B, Yang Y S. Microstructure refinement of Mg-Gd-Y-Zr alloy under pulsed magnetic field [J]. J. Iron Steel Res. Int., 2012, 19(suppl.1) : 446
|
96 |
Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr Alloy [J]. Rare Met. Mater. Eng., 2009, 38: 519
|
|
汪 彬, 杨院生, 周吉学 等. 脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 519
|
97 |
Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
doi: 10.11900/0412.1961.2017.00503
|
|
吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
doi: 10.11900/0412.1961.2017.00503
|
98 |
Jiang Y B, Tang G Y, Shek C, et al. Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment [J]. J. Alloys Compd., 2011, 509: 4308
doi: 10.1016/j.jallcom.2011.01.052
|
99 |
Wang G, Croaker P, Dargusch M, et al. Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy [J]. Comput. Mater. Sci., 2017, 134: 116
doi: 10.1016/j.commatsci.2017.03.041
|
100 |
Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
|
101 |
Hu S P, Chen L P, Zhou Q, et al. Research progress in effects of physical fields on solidified structure of metals [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 717
|
|
胡世平, 陈乐平, 周 全 等. 物理场对金属凝固组织影响的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 717
doi: 10.15980/j.tzzz.2018.07.006
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|