Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 383-396    DOI: 10.11900/0412.1961.2024.00310
Overview Current Issue | Archive | Adv Search |
Defect Control of Magnesium Alloy Gigacastings
JIANG Bin, ZHANG Ang(), SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng
National Key Laboratory of Advanced Casting Technologies, National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Cite this article: 

JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings. Acta Metall Sin, 2025, 61(3): 383-396.

Download:  HTML  PDF(2238KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The demand for lightweighting is rapidly increasing to meet the carbon peak and neutrality goals. Gigacasting integrates stamping and welding processes into a single high-pressure die-casting operation, streamlining production workflows and considerably enhancing production efficiency, thereby accelerating advancements in automotive lightweighting. Magnesium alloys, which are the lightest metallic structural materials at present, are superior choices for lightweighting because of their low density, high strength, and excellent casting performance. Magnesium alloy gigacasting has enormous potential for automotive applications, enabling the production of lightweight automotive components with superior mechanical properties. However, this process faces challenges because magnesium alloys' active chemical properties and high susceptibility to hot tearing, combined with their large size, thin wall thickness, and complex geometries, make defects like porosity and hot tearing prevalent. These defects greatly impair the performance of gigacast components. Preventing and mitigating casting defects is critical for improving the yield and quality stability of magnesium alloy gigacastings, thereby facilitating their widespread application in industries like automotive and aerospace. To address these issues, the causes and control measures for three common defects (porosities, defect bands, and hot tearing) are briefly explored in this study. Progress and challenges in defect control, focusing on melt treatment, alloy development, process optimization, and structural design, are also outlined. This review aims to provide valuable insights into defect control strategies for developing high-performance magnesium alloy gigacastings.

Key words:  magnesium alloy      gigacasting process      defect      microstructure      process     
Received:  03 September 2024     
ZTFLH:  TG292  
Fund: National Key Research and Development Program of China(2021YFB3701000);National Natural Science Foundation of China(52471118);National Natural Science Foundation of China(U21A2048);Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)
Corresponding Authors:  ZHANG Ang, Tel: 18811328068, E-mail: angzhang@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00310     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/383

DefectCharacteristicCausePrevention measure

Gas

porosity

Round and oval shape with smooth surfaceGas trapped during die casting process and gas generated by the decomposition of mold release agentEquipping vacuum system, reasonable selection of process parameters and coating, and control of the amount of spraying

Adhesion

Strip-shaped scratches along the mold-opening direction on the casting surface

Damaged or rough mold surface, high casting temperature or mold temperature, and bad release agent effect

Repair the damaged part of the mold surface, adjust the balance of the ejector rods, use the release agent with good release effect, and adjust the pouring and mold temperatures

Cold shut

Irregular sunken linear lines on the casting surfacePoor fluidity of the alloy melt, low filling rate, low pouring temperature, and low mold temperatureIncrease the pouring temperature, shorten the filling time, enhance the fluidity of the liquid metal, and improve the injection rate

Defect

band

A band of pores with solute segregation, distributed near the casting surface and some also in the core area

The shear force in the solid-liquid two-phase region causes the fragmentation, remelting, and coalescence of externally solidified crystals. It is difficult for liquid metal to fill at late solidification, resulting in a large number of pores

Increase the shear force, by increasing the injection rate and adjusting the vacuum time, to break externally solidified crystals

Undercasting

Insufficient filling parts or incomplete casting contourPoor fluidity, low pouring temperature, low mold temperature, too much involved gas, and poor operationOptimize the alloy composition and improve pouring and mold temperatures

Flow mark

Clearly visible, non-directional stripes that

differ in color from

the metal matrix

Low mold temperature, splashing due to too small cross-section area and inappropriate position of the inner gate, insufficient pressure on the metal, and too much coatingRaise the mold temperature, adjust the cross-sectional area and position of the inner gate, adjust the injection rate and pressure, and use appropriate amount of coating

Deformation

Overall or partial deformation of the

casting

Poor structural design, insufficient casting rigidity due to premature mold opening, uneven force during ejection caused by unreasonable setting of ejector rodsImprove casting structure, adjust mold opening time, reasonably set the number and position of ejector rods, and eliminate mold pulling problem

Burr

Metal flakes appear on the edge of the parting surface

High injection rate, insufficient locking force, high pouring temperature, and worn and deformed hinge of die casting machine

Check the locking force, correct the mold, clean the cavity and parting surface, and reduce poring temperature and the

injection rate

Slag inclusionIrregular impurities on the casting surface and inside the castingUnclean furnace materials, insufficient alloy purification, unclean casting mold, and slag and oxides brought into meltEnsure the cleanliness of furnace materials, refine melt, and promptly clean the mold

Crack

Network-like protrusions or indentations resembling hairs on the casting surfaceCracks on the surface of the mold cavity, high pouring temperature, rough surface of the mold cavitySelect high-quality mold materials, avoid too high pouring temperature, and sufficient and uniform mold preheating

Drawing

die

Difficult to smoothly demold

Insufficient mold surface roughness, carbon deposits and oxidation on the mold surface, improper or insufficient use of lubricants, unreasonable design of mold structureSpray special coatings, perform surface treatment on the mold surface, select appropriate lubricants, and minimize mold deformation and wear
Table 1  Common defects in die casting
Fig.1  Defect morphologies of porosities (including gas pore, gas-shrinkage pore, and island-shrinkage)[29] (a), defect band[32] (b), and hot tearing[33] (c)
Fig.2  Simulations of bubble dynamics and dendrite-bubble interaction
(a) changes of dimensionless shape parameter Cb with hw / d0 of the obstacle[35] (Cb—revised Blaschke coefficient, hw—dimensionless horizontal interval width, d0—dimensionless bubble diameter, vw—dimensionless vertical obstacle width; inset shows the rising bubble in the bilateral arc obstacle cases)(b) changes of the length (L, mesh in unit) of the closed liquid phase region (CLPR) with the dimensionless undercooling (ΔT / ΔTf)[39]Tf—undercooling, K; ΔTf—the freezing temperature range, K; g—given gravita-tional acceleration, m/s2; g0—gravitational acceleration benchmark, m/s2; inset shows the definition of the length CLPR)
Fig.3  Schematic of continuous non-flux refining system for magnesium melt[76]
Fig.4  “Partial”-“whole” collaborative design based on typical structural features
Fig.5  Optimization designs of material-structure-property integration (UTS—utimate tensile strength, YS—yield strength, EL—elongation)
Fig.6  Simulations and predictions of die-casting defects of magnesium alloy dashboard bracket
(a) air entrainment
(b) misrun sensitivity
(c) total shrinkage porosity
(d) hot tearing indicator
1 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metal. Sin., 2021, 57: 1362
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
2 Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11: 2611
3 Li Y F, Zhang A, Li C M, et al. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application [J]. J. Mater. Res. Technol., 2023, 26: 2919
4 Jiang B, Dong Z H, Zhang A, et al. Recent advances in micro-alloyed wrought magnesium alloys: Theory and design [J]. Trans. Nonferrous Met. Soc. Chin., 2022, 32: 1741
5 Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
6 Chen W T, Yang J Y, Yu W B, et al. One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite [J]. J. Magnes. Alloy., 2024, 12: 4219
7 Wang T L, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook [J]. J. Magnes. Alloy., 2022, 10: 326
8 Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications [J]. J. Magnes. Alloy., 2023, 11: 78
9 Zhang Z M, Yu J M, Xue Y, et al. Recent research and development on forming for large magnesium alloy components with high mechanical properties [J]. J. Magnes. Alloy., 2023, 11: 4054
10 Liu B, Yang J, Zhang X Y, et al. Development and application of magnesium alloy parts for automotive OEMs: A review [J]. J. Magnes. Alloy., 2023, 11: 15
11 Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
12 Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: A review [J]. J. Magnes. Alloy., 2023, 11: 3609
13 Luo A A. Magnesium casting technology for structural applications [J]. J. Magnes. Alloy., 2013, 1: 2
14 Weiler J P. A review of magnesium die-castings for closure applications [J]. J. Magnes. Alloy., 2019, 7: 297
doi: 10.1016/j.jma.2019.02.005
15 Li Z X, Li D J, Zhou W K, et al. Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys [J]. J. Magnes. Alloy., 2022, 10: 1857
16 Wu M W, Hou Y Y, Hua L, et al. On the deformation behavior of heterogeneous microstructure and its effect on the mechanical properties of die cast AZ91D magnesium alloy [J]. J. Magnes. Alloy., 2022, 10: 1981
17 Zhu S M, Abbott T B, Nie J F, et al. Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44 [J]. J. Magnes. Alloy., 2021, 9: 1537
18 Prasad S V S, Prasad S B, Verma K, et al. The role and significance of Magnesium in modern day research-A review [J]. J. Magnes. Alloy., 2022, 10: 1
19 Li P J, Xie Y R. Transformation and development of subverting traditional automotive manufacturing model [J]. Chin. Ind. Inf. Technol., 2020, (10): 48
李培杰, 谢禹睿. 颠覆传统汽车制造模式的变革发展 [J]. 中国工业和信息化, 2020, (10): 48
20 Tao Y L, Zhang M Y, Xiang K J, et al. Integrated die casting promotes the innovation and development of aluminum alloy materials [J]. Foundry Equip. Technol., 2022, (4): 67
陶永亮, 张明怡, 向科军 等. 一体化压铸促进铝合金材料创新与发展 [J]. 铸造设备与工艺, 2022, (4): 67
21 Li T, Song J F, Zhang A, et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components [J]. J. Magnes. Alloy., 2023, 11: 4166
22 Tao Y L, Yang J J, Liu X T, et al. Large die-casting die is the key technology to realize integrated die-casting [J]. Die Mould Manuf., 2023, 23: 47
陶永亮, 杨建京, 刘雪停 等. 大型压铸模是实现一体化压铸的关键技术 [J]. 模具制造, 2023, 23: 47
23 Xiao X Y. “Jin” precedes “opportunity” leading the new era of die casting [J]. Chin. Ind. Inf. Technol., 2023, (11): 28
肖昕宇. “劲”占先“机”引领压铸新时代 [J]. 中国工业和信息化, 2023, (11): 28
24 Jiang B, Zhang A, Yang Y, et al. Recent advances in numerical simulation of solidification process in cast magnesium alloys [J]. Foundry, 2024, 73: 1043
蒋 斌, 张 昂, 杨 艳 等. 铸造镁合金凝固过程数值模拟研究进展 [J]. 铸造, 2024, 73: 1043
25 Zhang A, Guo Z P, Jiang B, et al. Phase-field modeling of microstructure and gas porosity evolution during solidification of alloys: A review [J]. Chin. J. Nonferr. Metals, 2021, 31: 2976
张 昂, 郭志鹏, 蒋 斌 等. 合金凝固组织和气孔演变相场模拟研究进展 [J]. 中国有色金属学报, 2021, 31: 2976
26 Zhang A. Multi-physical phase-field modeling of microstructure and hydrogen porosity evolution during solidification of aluminum alloys [D]. Beijing: Tsinghua University, 2020
张 昂. 铝合金多物理场凝固组织和氢气孔演变的相场建模研究 [D]. 北京: 清华大学, 2020
27 Xiong S M, Du J L, Guo Z P, et al. Characterization and modeling study on interfacial heat transfer behavior and solidified microstructure of die cast magnesium alloys [J]. Acta Metal. Sin., 2018, 54: 174
熊守美, 杜经莲, 郭志鹏 等. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究 [J]. 金属学报, 2018, 54: 174
doi: 10.11900/0412.1961.2017.00418
28 Yang H M, Pu Z M, Guo Z P, et al. A study of metal/die interfacial heat transfer behavior of vacuum die cast pure copper [J]. China Foundry, 2020, 17: 206
29 Xie H C, Wang J, Li Y F, et al. Fast shot speed induced microstructure and mechanical property evolution of high pressure die casting Mg-Al-Zn-RE alloys [J]. J. Mater. Process. Technol., 2024, 331: 118523
30 Yang Z F, Maurey A, Kang J D, et al. 2D and 3D characterization of pore defects in die cast AM60 [J]. Mater. Charact., 2016, 114: 254
31 Li X, Xiong S M, Guo Z. Correlation between porosity and fracture mechanism in high pressure die casting of AM60B alloy [J]. J. Mater. Sci. Technol., 2016, 32: 54
doi: 10.1016/j.jmst.2015.10.002
32 Yu W B, Ma C S, Ma Y H, et al. Correlation of 3D defect-band morphologies and mechanical properties in high pressure die casting magnesium alloy [J]. J. Mater. Process. Technol., 2021, 288: 116853
33 Song J F, Zhao H, Liao J G, et al. Comparison on hot tearing behavior of binary Mg-Al, Mg-Y, Mg-Gd, Mg-Zn, and Mg-Ca alloys [J]. Metall. Mater. Trans., 2022, 53A: 2986
34 Barbagallo S. Shrinkage porosity in thin walled AM60 HPDC magnesium alloy U-shaped box [J]. Int. J. Cast Met. Res., 2004, 17: 364
35 Zhang A, Su D B, Li C M, et al. Investigation of bubble dynamics in a micro-channel with obstacles using a conservative phase-field lattice Boltzmann method [J]. Phys. Fluids, 2022, 34: 043312
36 Zhang A, Su D B, Li C M, et al. Three-dimensional phase-field lattice-Boltzmann simulations of a rising bubble interacting with obstacles: Shape quantification and parameter dependence [J]. Phys. Fluids, 2022, 34: 103301
37 Zhang A, Guo Z P, Wang Q G, et al. Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study [J]. Phys. Fluids, 2019, 31: 063106
38 Zhang A, Du J L, Guo Z P, et al. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking [J]. Phys. Rev., 2019, 100E: 023305
39 Cheng J, Zhang A, Qin L, et al. Interaction between growing dendrite and rising bubble under convection [J]. Int. J. Multiphase Flow, 2024, 170: 104656
40 Zhang A, Jiang B, Guo Z P, et al. Solution to multiscale and multiphysics problems: A phase-field study of fully coupled thermal-solute-convection dendrite growth [J]. Adv. Theory Simul., 2021, 4: 2000251
41 Zhang A, Meng S X, Guo Z P, et al. Dendritic growth under natural and forced convection in Al-Cu alloys: From equiaxed to columnar dendrites and from 2D to 3D phase-field simulations [J]. Metall. Mater. Trans., 2019, 50B: 1514
42 Zhang A, Guo Z P, Xiong S M. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt [J]. China Foundry, 2017, 14: 373
43 Yang Q, Zhang A, Jiang B, et al. Numerical investigation of eutectic growth dynamics under convection by 3D phase-field method [J]. Comput. Math. Appl., 2022, 114: 83
44 Zhang A, Guo Z P, Jiang B, et al. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification [J]. Acta Mater., 2021, 214: 117005
45 Zhang A, Du J L, Zhang X P, et al. Phase-field modeling of microstructure evolution in the presence of bubble during solidification [J]. Metall. Mater. Trans., 2020, 51A: 1023
46 Zhang A, Guo Z, Wang Q, et al. Multiphase-field modelling of hydrogen pore evolution during alloy solidification [J]. IOP Conf. Ser. Mater. Sci. Eng., 2020, 861: 012021
47 Wu M W, Hou Y Y, Li X B, et al. Microstructure characteristics and formation mechanism of defect band in die cast magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 117
吴孟武, 侯莹滢, 李晓波 等. 压铸镁合金缺陷带的组织特征及形成机理 [J]. 特种铸造及有色合金, 2020, 40: 117
doi: 10.15980/j.tzzz.2020.02.001
48 Gourlay C M, Dahle A K. Dilatant shear bands in solidifying metals [J]. Nature, 2007, 445: 70
49 Li X B, Guo Z P, Xiong S M. Influence of melt flow on the formation of defect band in high pressure die casting of AZ91D magnesium alloy [J]. Mater. Charact., 2017, 129: 344
50 Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys [J]. J. Light Met., 2001, 1: 61
51 Deda E, Berman T D, Allison J E. The influence of al content and thickness on the microstructure and tensile properties in high-pressure die cast magnesium alloys [J]. Metall. Mater. Trans., 2017, 48A: 1999
52 Yang K V, Cáceres C H, Nagasekhar A V, et al. The skin effect and the yielding behavior of cold chamber high pressure die cast Mg-Al alloys [J]. Mater. Sci. Eng., 2012, A542: 49
53 Li X B, Xiong S M, Guo Z P. Characterization of the grain structures in vacuum-assist high-pressure die casting AM60B alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 619
54 Hou Y Y, Wu M W, Tian B H, et al. Characteristics and formation mechanisms of defect bands in vacuum-assisted high-pressure die casting AE44 alloy [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 1852
55 Otarawanna S, Gourlay C M, Laukli H I, et al. The thickness of defect bands in high-pressure die castings [J]. Mater. Charact., 2009, 60: 1432
56 Zhang T T, Yu W B, Ma C S, et al. The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy [J]. J. Magnes. Alloy., 2023, 11: 3141
57 Le T H, Wei Q, Wang J H, et al. Effect of different casting techniques on the microstructure and mechanical properties of AE44-2 magnesium alloy [J]. Mater. Res. Express, 2020, 7: 116513
58 Yang Z Z, Wang K, Fu P H, et al. Influence of alloying elements on hot tearing susceptibility of Mg-Zn alloys based on thermodynamic calculation and experimental [J]. J. Magnes. Alloy., 2018, 6: 44
59 Vinodh G, Nodooshan H R J, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
60 Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Met., 2021, 15: 1298
61 Yang Z Y, Li M Q, Song J F, et al. Optimized hot tearing resistance of VW63K magnesium alloy [J]. Int. J. Met., 2022, 16: 1858
62 Zhu G N, Wang Z, Qiu W Y, et al. Effect of Yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Met., 2020, 14: 179
63 Su X, Feng Z J, Wang F, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy [J]. Int. J. Met., 2021, 15: 576
64 Song J F, Wang Z, Huang Y D, et al. Hot tearing characteristics of Mg-2Ca-xZn alloys [J]. J. Mater. Sci., 2016, 51: 2687
65 Xia Y T, Zheng J, Chen J, et al. The ductility variation of high-pressure die-cast AE44 alloy: The role of inhomogeneous microstructure [J]. Metall. Mater. Trans., 2021, 52A: 2274
66 Zhang Y F, Zheng J, Xia Y T, et al. Porosity quantification for ductility prediction in high pressure die casting AM60 alloy using 3D X-ray tomography [J]. Mater. Sci. Eng., 2020, A772: 138781
67 Li X, Xiong S M, Guo Z. Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy [J]. J. Mater. Process. Technol., 2016, 231: 1
68 Ma C S, Yu W B, Zhang T T, et al. The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy [J]. J. Magnes. Alloy., 2023, 11: 753
69 Lee C, Youn J, Kim Y. Effect of strain rate on the defect susceptibility of tensile properties to porosity variation [J]. Mater. Sci. Eng., 2017, A683: 135
70 Lee C D, Shin K S. Effect of microporosity on the tensile properties of AZ91 magnesium alloy [J]. Acta Mater., 2007, 55: 4293
71 Zhou B, Meng D H, Wu D, et al. Characterization of porosity and its effect on the tensile properties of Mg-6Gd-3Y-0.5Zr alloy [J]. Mater. Charact., 2019, 152: 204
doi: 10.1016/j.matchar.2019.04.021
72 Susan D F, Crenshaw T B, Gearhart J S. The effects of casting porosity on the tensile behavior of investment cast 17-4PH stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 2917
73 Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
74 Yu B, Jia Z, Li Y J, et al. Research progress of purification technology in magnesium alloy melt [J]. Foundry Technol., 2021, 42: 635
喻 兵, 贾 征, 李又佳 等. 镁合金熔体净化技术研究进展 [J]. 铸造技术, 2021, 42: 635
75 Fan X Z, Wang R, Ma J, et al. Effect of mixed-RE on fluidity and mechanical properties of die casting AZ91D magnesium alloy [J]. Foundry Technol., 2022, 43: 285
樊晓泽, 王 瑞, 马 骏 等. 混合稀土对AZ91D压铸镁合金流动性及力学性能的影响 [J]. 铸造技术, 2022, 43: 285
76 Zha J L. A study on Mg melt continuous non-flux purification theory and key techniques [D]. Chongqing: Chongqing University, 2018
查吉利. 镁熔体无熔剂连续精炼理论及关键技术研究 [D]. 重庆: 重庆大学, 2018
77 Weiler J P. Exploring the concept of castability in magnesium die-casting alloys [J]. J. Magnes. Alloy., 2021, 9: 102
doi: 10.1016/j.jma.2020.05.008
78 Ma C S, Yu W B, Pi X F, et al. Study of Mg-Al-Ca magnesium alloy ameliorated with designed Al8Mn4Gd phase [J]. J. Magnes. Alloy., 2020, 8: 1084
79 Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
80 Ni J, Jin L, Zeng J, et al. Development of high-strength magnesium alloys with excellent ignition-proof performance based on the oxidation and ignition mechanisms: A review [J]. J. Magnes. Alloy., 2023, 11: 1
81 You J, Wang C, Shang S L, et al. Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys [J]. J. Magnes. Alloy., 2023, 11: 2006
82 Bai Y, Ye B, Wang L Y, et al. A novel die-casting Mg alloy with superior performance: Study of microstructure and mechanical behavior [J]. Mater. Sci. Eng., 2021, A802: 140655
83 Rong J, Xiao W L, Fu Y, et al. A high performance Mg-Al-Ca alloy processed by high pressure die casting: Microstructure, mechanical properties and thermal conductivity [J]. Mater. Sci. Eng., 2022, A849: 143500
84 Wang F, Dong H K, Sun S J, et al. Microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca-xSn alloys [J]. J. Mater. Eng. Perform., 2018, 27: 612
85 Yang Q, Guan K, Bu F Q, et al. Microstructures and tensile properties of a high-strength die-cast Mg-4Al-2RE-2Ca-0.3Mn alloy [J]. Mater. Charact., 2016, 113: 180
86 Yang Q, Bu F Q, Zheng T, et al. Influence of trace Sr additions on the microstructures and the mechanical properties of Mg-Al-La-based alloy [J]. Mater. Sci. Eng., 2014, A619: 256
87 Li X. Research on microstructures and properties of moderate or high strength and high thermal conductivity Mg-Al-Ce series die-cast magnesium alloys [D]. Xi'an: Xi'an University of Technology, 2022
李 潇. 中强高导热Mg-Al-Ce系压铸镁合金组织与性能研究 [D]. 西安: 西安理工大学, 2022
88 Han Q, Zhang J. Fluidity of alloys under high-pressure die casting conditions: Flow-choking mechanisms [J]. Metall. Mater. Trans., 2020, 51B: 1795
89 Sharifi P, Jamali J, Sadayappan K, et al. Quantitative experimental study of defects induced by process parameters in the high-pressure die cast process [J]. Metall. Mater. Trans., 2018, 49A: 3080
90 Zhang J L, Chen L, Tian J J, et al. Numerical simulation and die casting process optimization of magnesium alloy vehicle head-up display bracket (HUD) [J]. Spec. Cast. Nonferrous Alloy., 2023, 43: 1141
张继龙, 陈 龙, 田晶晶 等. 镁合金汽车抬头显示支架压铸工艺模拟与优化 [J]. 特种铸造及有色合金, 2023, 43: 1141
91 Dou K, Lordan E, Zhang Y J, et al. A complete computer aided engineering (CAE) modelling and optimization of high pressure die casting (HPDC) process [J]. J. Manuf. Process., 2020, 60: 435
doi: 10.1016/j.jmapro.2020.10.062
[1] HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 397-419.
[2] ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. 金属学报, 2025, 61(3): 488-498.
[3] FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. 金属学报, 2025, 61(3): 475-487.
[4] WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. 金属学报, 2025, 61(3): 372-382.
[5] ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 361-371.
[6] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[7] WANG Qitao, LI Yanfen, ZHANG Jiarong, LI Yaozhi, FU Haiyang, LI Xinle, YAN Wei, SHAN Yiyin. Low Cycle Fatigue Behavior of 9Cr-ODS Steel as a Fusion Blanket Structural Material at Room Temperature[J]. 金属学报, 2025, 61(2): 323-335.
[8] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[9] HAN Qifei, DI Xinglong, GUO Yueling, YE Shuijun, ZHENG Yuanxuan, LIU Changmeng. Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2025, 61(2): 211-225.
[10] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[11] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
[12] XIA Xingchuan, ZHANG Enkuan, DING Jian, WANG Yujiang, LIU Yongchang. Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings[J]. 金属学报, 2025, 61(1): 59-76.
[13] WANG Binshan, XU Guang, REN Rui, ZHANG Qiang, SHAN Zhaohui, FAN Jianfeng. Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion[J]. 金属学报, 2025, 61(1): 129-142.
[14] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[15] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
No Suggested Reading articles found!