|
|
Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys |
WANG Huiyuan1,2,3( ), MENG Zhaoyuan1,3, JIA Hailong1,3, XU Xinyu4( ), HUA Zhenming2 |
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China 2 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China 3 International Center of Future Science, Jilin University, Changchun 130012, China 4 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China |
|
Cite this article:
WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys. Acta Metall Sin, 2025, 61(3): 372-382.
|
Abstract Magnesium alloys are widely used in aerospace, automotive, and rail transit industries as the lightest structural metallic materials. Minor alloying additions have proven to be effective in enhancing processability and ductility. Recent studies demonstrate that low-alloyed Mg-Zn-Ca(-Al) alloys exhibit exceptional room-temperature formability due to their weak texture after rolling and annealing. This advancement indicates that magnesium alloy sheets could potentially replace steel and aluminum alloy in body panel applications. However, achieving improved strength while maintaining formability remains a substantial challenge, limiting the broader adoption of low-alloyed magnesium alloys. Bake hardening (BH) treatment, a technique commonly employed for steel and Al body panels to enhance post-forming strength, has recently been shown to strengthen Mg-Zn-Ca(-Al) alloy sheets. BH treatment partially addresses the trade-off between formability and strength in low-alloyed magnesium alloys by utilizing the limited solid solution atoms. As the development of BH magnesium alloy sheets progresses, further improvements in properties or the design of new alloy compositions require a thorough understanding of the relationship between microstructure and mechanical properties and the underlying mechanisms. This review examines recent advancements in low-alloyed bake-hardenable magnesium alloys, focusing on three mechanisms: dislocation segregation, twin boundary segregation, and Guinier-Preston (GP) zone-induced bake hardening. Additionally, it provides a brief outlook on the future development trends aimed at expanding the application range of these materials. The insights presented here are expected to guide the design and optimization of BH magnesium alloys with enhanced performance and broader industrial applicability.
|
Received: 04 November 2024
|
|
Fund: National Natural Science Foundation of China(52334010);National Natural Science Foundation of China(52271103) |
Corresponding Authors:
WANG Huiyuan, professor, Tel: (022)60201981, E-mail: wanghuiyuan@hebut.edu.cn; XU Xinyu, Tel: (022)60201981, E-mail: xinyuxu@connect.hku.hk
|
1 |
Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
|
|
王慧远, 张 行, 徐新宇 等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
|
2 |
Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
|
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
3 |
Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
|
|
刘 勇, 曾 钢, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
|
4 |
Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
|
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
5 |
Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
|
|
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
|
6 |
Zhu G J, Wang S Q, Zha M, et al. Effect of rare earth element Ce on the bulk texture and mechanical anisotropy of as-extruded Mg-0.3Al-0.2Ca-0.5Mn alloy sheets [J]. Acta Metall. Sin., 2024, 60: 1079
|
|
朱桂杰, 王思清, 查 敏 等. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响 [J]. 金属学报, 2024, 60: 1079
doi: 10.11900/0412.1961.2024.00044
|
7 |
Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
|
8 |
Wang S Q, Zha M, Jia H L, et al. A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms [J]. J. Mater. Sci. Technol., 2025, 211: 303
doi: 10.1016/j.jmst.2024.06.002
|
9 |
Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization [J]. J. Alloys Compd., 2020, 849: 156640
|
10 |
Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
|
11 |
Liu S, Wang C, Ning H, et al. Achieving high ductility and low in-plane anisotropy in magnesium alloy through a novel texture design strategy [J]. J. Magnesium Alloy., 2024, 12: 2863
|
12 |
Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
|
13 |
Bian M Z, Sasaki T T, Suh B C, et al. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability [J]. Scr. Mater., 2017, 138: 151
|
14 |
Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4
pmid: 29955065
|
15 |
Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
|
16 |
Tang H. Automotive Vehicle Assembly Processes and Operations Management [M]. Warrendale: SAE International, 2017: 135
|
17 |
Shome M, Tumuluru M. Welding and Joining of Advanced High Strength Steels (AHSS) [M]. Cambridge: Woodhead Publishing, 2015: 23
|
18 |
Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Amsterdam: Elsevier, 2017: 260
|
19 |
Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of Iron [J]. Proc. Phys. Soc., 1949, 62A: 49
|
20 |
Blavette D, Cadel E, Fraczkiewicz A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects [J]. Science, 1999, 286: 2317
pmid: 10600736
|
21 |
Zhu S, Li Z H, Yan L Z, et al. Effects of Zn addition on the natural ageing behavior and bake hardening response of a pre-aged Al-Mg-Si-Cu alloy [J]. Acta Metall. Sin., 2019, 55: 1395
|
|
朱 上, 李志辉, 闫丽珍 等. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响 [J]. 金属学报, 2019, 55: 1395
|
22 |
Wang H, Shi W, He Y L, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels [J]. Acta Metall. Sin., 2011, 47: 263
doi: 10.3724/SP.J.1037.2010.00693
|
|
王 华, 史 文, 何燕霖 等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究 [J]. 金属学报, 2011, 47: 263
|
23 |
Bryant J D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet [J]. Metall. Mater. Trans., 1999, 30: 1999
|
24 |
Hou Z R, Opitz T, Xiong X C, et al. Bake-partitioning in a press-hardening steel [J]. Scr. Mater., 2019, 162: 492
|
25 |
Aruga Y, Kozuka M, Takaki Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 116: 82
|
26 |
Soenen B, De A K, Vandeputte S, et al. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels [J]. Acta Mater., 2004, 52: 3483
|
27 |
Hu W W, Yang Z Q, Ye H Q. Cottrell atmospheres along dislocations in long-period stacking ordered phases in a Mg-Zn-Y alloy [J]. Scr. Mater., 2016, 117: 77
|
28 |
Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
|
29 |
Xiao L R, Chen X F, Wei K, et al. Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy [J]. Scr. Mater., 2021, 191: 219
|
30 |
Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
|
31 |
Hua Z M, Zha M, Meng Z Y, et al. Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 21
|
32 |
Li Y J, Fang Y, Wang C, et al. Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg-2Zn-0.5Ca alloy [J]. Mater. Sci. Eng., 2022, A831: 142239
|
33 |
Meng Z Y, Wang C, Hua Z M, et al. Achieving extraordinary thermal stability of fine-grained structure in a dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 797
|
34 |
Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
|
35 |
Klos A, Kellner S, Wortberg D, et al. Forming characteristics of artificial aging Al-Mg-Si-Cu sheet alloys [J]. AIP Conf. Proc., 2017, 1896: 020020
|
36 |
Tan S K, Pan X W, Li M, et al. Summary of steel sheet in Cherry Car Co. [J]. Automob. Technol. Mater., 2004, (6): 59
|
|
谭善锟, 潘兴旺, 李 明 等. 奇瑞轿车用钢板 [J]. 汽车工艺与材料, 2004, (6): 59
|
37 |
Yang M, Jia H L, Jiang R, et al. Excellent synergy of formability and strength of a Mg-Zn-Y-Ca-Zr alloy by tailoring segregation-assisted weak elliptical ring texture [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.06.029
|
38 |
Lejček P. Grain Boundary Segregation in Metals [M]. Berlin: Springer, 2010: 25
|
39 |
Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369
pmid: 23704567
|
40 |
He C, Li Z Q, Chen H W, et al. Unusual solute segregation phenomenon in coherent twin boundaries [J]. Nat. Commun., 2021, 12: 722
doi: 10.1038/s41467-021-21104-8
pmid: 33526770
|
41 |
Zhu Y M, Xu S W, Nie J F. $\left\{ 10\bar{1}1 \right\}$ twin boundary structures in a Mg-Gd alloy [J]. Acta Mater., 2018, 143: 1
|
42 |
Somekawa H, Watanabe H, Basha D A, et al. Effect of twin boundary segregation on damping properties in magnesium alloy [J]. Scr. Mater., 2017, 129: 35
|
43 |
Zhou X Z, Su H H, Ye H Q, et al. Removing basal-dissociated<c + a> dislocations by $\left\{ 10\bar{1}2 \right\}$ deformation twinning in magnesium alloys [J]. Acta Mater., 2021, 217: 117170
|
44 |
Wang C, Ju H, Li M X, et al. Segregation potency at $\left\{ 10\bar{1}2 \right\}$ and $\left\{ 10\bar{1}1 \right\}$ twin boundaries in Mg with Zn and Ca co-addition: A first-principles study [J]. Materialia, 2021, 15: 101031
|
45 |
Wang X, Hu Y, Yu K H, et al. Room temperature deformation-induced solute segregation and its impact on twin boundary mobility in a Mg-Y alloy [J]. Scr. Mater., 2022, 209: 114375
|
46 |
Zhang H, Li Y X, Ding Z G, et al. Origin of twin-like $\left\{ 33\bar{6}4 \right\}$ tilt boundary and associated solute segregation in a high strain rate deformed Mg-Y alloy [J]. Scr. Mater., 2021, 201: 113982
|
47 |
Su H H, Zheng S J, Yang Z Q, et al. Atomic-scale insights into grain boundary-mediated plasticity mechanisms in a magnesium alloy subjected to cyclic deformation [J]. Acta Mater., 2024, 277: 120210
|
48 |
Chen X F, Xiao L R, Ding Z G, et al. Atomic segregation at twin boundaries in a Mg-Ag alloy [J]. Scr. Mater., 2020, 178: 193
|
49 |
Somekawa H, Tsuru T, Naito K, et al. Control of twin boundary mobility by solute segregation in Mg binary alloys [J]. Scr. Mater., 2024, 249: 116173
|
50 |
Yang Q, Lv S H, Chen P, et al. Formation and solute segregation for an asymmetric tilt boundary on $\left\{ 10\bar{1}2 \right\}$ twin boundaries [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.01.026
|
51 |
Li Z H, Sasaki T T, Bian M Z, et al. Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys [J]. J. Alloys Compd., 2020, 847: 156347
|
52 |
Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
|
53 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
54 |
Lee Y S, Koh D H, Kim H W, et al. Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment [J]. Scr. Mater., 2018, 147: 45
|
55 |
Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys [J]. Scr. Mater., 1997, 37: 1475
|
56 |
Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
|
57 |
Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
|
58 |
Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
|
59 |
Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
|
60 |
Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
|
61 |
Nakata T, Mezaki T, Ajima R, et al. High-speed extrusion of heat-treatable Mg-Al-Ca-Mn dilute alloy [J]. Scr. Mater., 2015, 101: 28
|
62 |
Nakata T, Xu C, Matsumoto Y, et al. Optimization of Mn content for high strengths in high-speed extruded Mg-0.3Al-0.3Ca (wt%) dilute alloy [J]. Mater. Sci. Eng., 2016, 673A: 443
|
63 |
Nakata T, Xu C, Ajima R, et al. Improving mechanical properties and yield asymmetry in high-speed extrudable Mg-1.1Al-0.24Ca (wt%) alloy by high Mn addition [J]. Mater. Sci. Eng., 2018, A712: 12
|
64 |
Bian M Z, Zeng Z R, Xu S W, et al. Improving formability of Mg-Ca-Zr sheet alloy by microalloying of Zn [J]. Adv. Eng. Mater., 2016, 18: 1763
|
65 |
Nakata T, Xu C, Yoshida Y, et al. Improving room-temperature stretch formability of a high-alloyed Mg-Al-Ca-Mn alloy sheet by a high-temperature solution-treatment [J]. Mater. Sci. Eng., 2021, A801: 140399
|
66 |
Schäublin R E, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 239: 118223
|
67 |
Cheng D, Hoglund E R, Wang K, et al. Atomic structures of ordered monolayer GP zones in Mg-Zn-X (X = Ca, Nd) systems [J]. Scr. Mater., 2022, 216: 114744
|
68 |
Li Z H, Cheng D, Wang K, et al. Revisited precipitation process in dilute Mg-Ca-Zn alloys [J]. Acta Mater., 2023, 257: 119072
|
69 |
Meng Z Y, Jia H L, Ju H, et al. Enhanced age-hardening in a lean Mg-Al-Ca-Mn alloy by trace silver addition [J]. Mater. Res. Lett., 2025
|
70 |
Li Z H, Sasaki T T, Shiroyama T, et al. Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy [J]. Mater. Res. Lett., 2020, 8: 335
|
71 |
Bhattacharyya J J, Sasaki T T, Nakata T, et al. Determining the strength of GP zones in Mg alloy AXM10304, both parallel and perpendicular to the zone [J]. Acta Mater., 2019, 171: 231
doi: 10.1016/j.actamat.2019.04.035
|
72 |
Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
|
73 |
Bhattacharyya J J, Sasaki T T, Nakata T, et al. Why rolled Mg-Al-Ca-Mn alloys are less responsive to aging as compared to the extruded [J]. Scr. Mater., 2023, 233: 115513
|
74 |
Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
|
75 |
Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|