Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 475-487    DOI: 10.11900/0412.1961.2024.00366
Overview Current Issue | Archive | Adv Search |
Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys
FU Hui1, SUN Yong2, ZOU Guodong2, ZHANG Fan1, YANG Xusheng3, ZHANG Tao1, PENG Qiuming2()
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
3 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Cite this article: 

FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys. Acta Metall Sin, 2025, 61(3): 475-487.

Download:  HTML  PDF(2946KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys are the lightest metallic structural materials. The density of magnesium alloys is ~1.7 g/cm3, which is ~2/3 of the aluminum alloy, ~2/5 of titanium alloys, and ~1/4 of steel. Magnesium alloys possess high specific strength, excellent casting performance, excellent biocompatibility, good electromagnetic shielding performance, remarkable damping performance, and ease of recovery. They have broad application potential in aerospace, defense, automobile transportation, biomedical, electronic 3C, construction, and energy fields. China has substantial Mg resources. The development of low-cost and high-performance magnesium alloys in the lightweight field can transform resource advantages into industrial benefits while promoting energy conservation and emission reduction in production and daily life. This is strategically significant for the enhancement of the country's technology industry and the achievement of the objectives of “carbon peak and carbon neutrality”. However, commercial magnesium alloys currently possess relatively low strength, poor ductility, and corrosion resistance compared with common metallic structural materials like steel and aluminum alloys, significantly hindering the large-scale industrial application of magnesium alloys as structural materials. Many methods exist to enhance the comprehensive mechanical properties of magnesium alloys. Conventionally, the microstructure of magnesium alloys can be modified by adding alloying elements, plastic deformation, and heat treatment. The strength of magnesium alloys can be improved through grain refinement, work hardening, solid solution strengthening, and precipitation strengthening. Nevertheless, magnesium alloys prepared through these traditional methods can achieve excellent strength but at the expense of ductility, leading to the strength-ductility tradeoff in the magnesium alloy. At present, ultrahigh-pressure (UHP) treatment technology can achieve novel phases and modified microstructures that cannot be prepared under atmospheric pressure. The pressure significantly impacts the thermodynamics and dynamic parameters of metallic materials, such as the equilibrium temperature, critical radius for nucleation, interfacial free energy, chemical potential, entropy, enthalpy and heat capacity, and nucleation rate. Thus, the solid solubility, grain size, morphologies, dislocation density and types, twin types and morphologies, as well as the distribution and morphologies of the intermetallic phases of the magnesium alloys, can be modified using UHP treatment combined with temperature. It offers significant potential for altering the microstructure of magnesium alloys, providing new paths to break the bottlenecks between the comprehensive properties. This paper summarizes the progress of the research on the UHP treatment of high-performance magnesium alloys, the fabrication technology, and the technical characteristics of the UHP treatment. Moreover, the effects of UHP treatment on the mechanical properties, corrosion resistance, and hydrogen storage properties of magnesium alloys by modifying the microstructures of magnesium alloys are emphasized. Finally, the future development directions of the UHP magnesium alloys are explored.

Key words:  magnesium alloy      ultrahigh-pressure      strength-ductility synergy      corrosion resistance      hydrogen storage property     
Received:  04 November 2024     
ZTFLH:  TG146.2  
Fund: Ministry of Education Yangtze River Scholar Professor Program(T2020124);National Natural Science Foundation of China(52371104);National Natural Science Foundation of China(52171126);National Natural Science Foundation of China(52202374);National Natural Science Foundation of China(52331003);Guangdong Basic and Applied Basic Research Foundation(2024A1515013052);Guangzhou Basic and Applied Basic Research Special Project(2024A04J4289);HK PolyU grant(1-YXB4)
Corresponding Authors:  PENG Qiuming, professor, Tel: (0335)8057047, E-mail: pengqiuming@ysu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00366     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/475

Fig.1  Schematics of the common ultrahigh-pressure (UHP) treatment equipments
Fig.2  OM images of Mg-30Al samples under different states[9] (A—snowflake-like Mg matrix, B—eutectic phase, SHP—super-high pressure. 800, 950, 1050, and 1150 represent 800, 950, 1050 and 1150 oC, respectively)
(a) as-cast (b) SHP-2 GPa-800 (c) SHP-2 GPa-950 (d) SHP-4 GPa-1050 (e) SHP-4 GPa-1150
Fig.3  Phase fraction of β-Li phase (a) and typical TEM (b) and scanning transmission electron microscopy (STEM) (c) images of dual-phase Mg-8Li alloys treated at 1000 oC under 6 GPa[6] (LAGB—low angle grain boundary, MTB—macrotwin boundary, NTB—nanotwin boundary)
Fig.4  Comparisons of the yield strength and fracture ductility of UHPed Mg-Li-x alloys[6,26,28,29]
Fig.5  Summary of effects of the UHP on the microstructure of the Mg-Al, Mg-Li, and Mg-RE alloys
Fig.6  Near-in-situ SEM images of surfaces of 4 GPa-900 Mg-13Li sample immersed in 3.5%NaCl (mass fraction) solution for 5 min (a), 15 min (b), 30 min (c), 60 min (d), 90 min (e), and 120 min (f)[12]
Fig.7  OM (a, c, e, f) and SEM (b, d) images of Mg-5Ni alloys with different states (1100, 1400, and 1600 represent 1100, 1400, and 1600 oC, respectively)[54]
(a, b) as-cast sample (c, d) 6 GPa-1100 (e) 6 GPa-1400 (f) 6 GPa-1600
1 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
2 Peng X, Liu W C, Wu G H. Strengthening-toughening methods and mechanisms of Mg-Li alloy: A review [J]. Rare Met., 2022, 41: 1176
3 Nie J F, Shin K S, Zeng Z R. Microstructure, deformation, and property of wrought magnesium alloys [J]. Metall. Mater. Trans., 2020, 51A: 6045
4 Yue Y H, Gao Y F, Hu W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582: 370
5 Ge B C, Fu H, Deng K K, et al. Unique strengthening mechanisms of ultrahigh pressure Mg alloys [J]. Bioact. Mater., 2018, 3: 250
doi: 10.1016/j.bioactmat.2017.11.009 pmid: 29744464
6 Fu H, Ge B C, Xin Y C, et al. Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins [J]. Nano Lett., 2017, 17: 6117
doi: 10.1021/acs.nanolett.7b02641 pmid: 28857573
7 Wang L, Lin X P, Xu C, et al. The microstructure and the mechanical property of AZ91D solidified under GPa-grade high-pressure [J]. Mater. Sci. Technol., 2019, 35: 1690
8 Peng Q M, Sun Y, Wang J, et al. Structural characteristics of $\left\{ 10\bar{1}1 \right\}$ contraction twin-twin interaction in magnesium [J]. Acta Mater., 2020, 192: 60
9 Zhao S S, Peng Q M, Li H, et al. Effects of super-high pressure on microstructures, nano-mechanical behaviors and corrosion properties of Mg-Al alloys [J]. J. Alloys Compd., 2014, 584: 56
10 Fu H, Peng Q M, Guo J X, et al. High-pressure synthesis of a nanoscale YB12 strengthening precipitate in Mg-Y alloys [J]. Scr. Mater., 2014, 76: 33
11 Feng J W, Li H N, Deng K K, et al. Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys [J]. Corros. Sci., 2018, 143: 229
12 Feng J W, Zhang H, Zhang L, et al. Microstructure and corrosion properties for ultrahigh-pressure Mg-Li alloys [J]. Corros. Sci., 2022, 206: 110519
13 Yang H, Ding Z, Li Y T, et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage [J]. Rare Met., 2023, 42: 2906
14 Ouyang L Z, Liu F, Wang H, et al. Magnesium-based hydrogen storage compounds: A review [J]. J. Alloys Compd., 2020, 832: 154865
15 Wu C, Yang S Q, Li Y, et al. Microstructural evolution and electrochemical properties of the ultra-high pressure treated La0.70Mg0.30Ni3.3 hydrogen storage alloy [J]. J. Alloys Compd., 2016, 665: 231
16 Pimenta Martins L G, Comin R, Matos M J S, et al. High-pressure studies of atomically thin van der Waals materials [J]. Appl. Phys. Rev., 2023, 10: 011313
17 Tang Y, Wang H K, Ouyang X P, et al. Overcoming strength-ductility tradeoff with high pressure thermal treatment [J]. Nat. Commun., 2024, 15: 3932
doi: 10.1038/s41467-024-48435-6 pmid: 38729936
18 Bridgman P W. Recent work in the field of high pressures [J]. Rev. Mod. Phys., 1946, 18: 1
19 Schilling J S. The use of high pressure in basic and materials science [J]. J. Phys. Chem. Solids, 1998, 59: 553
20 Wu B L, Chen B, Wang C W, et al. Corrosion behavior of a novel Mg-13Li-X alloy with different grain sizes by rapid solidification rate [J]. Rare Met., 2022, 41: 3197
21 Sobczak J J, Drenchev L, Asthana R. Effect of pressure on solidification of metallic materials [J]. Int. J. Cast Met. Res., 2012, 25: 1
22 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
23 Lin X P, Dai P L, Xu C, et al. Solute redistribution and mechanism of structure refinement of Mg-Al alloy during solidification under high pressure [J]. J. Alloys Compd., 2022, 910: 164777
24 Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
25 Ge B C, Yang M, Zu Q, et al. Lithium cluster segregation in coherent contraction twin boundaries of magnesium alloys [J]. Acta Mater., 2020, 201: 477
26 Peng Q M, Ge B C, Fu H, et al. Nanoscale coherent interface strengthening of Mg alloys [J]. Nanoscale, 2018, 10: 18028
doi: 10.1039/c8nr04805c pmid: 30229782
27 Peng Q M, Sun Y, Ge B C, et al. Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys [J]. Acta Mater., 2019, 169: 36
28 Zhang S, Sun Y, Wu R Z, et al. Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys [J]. J. Mater. Sci. Technol., 2020, 51: 79
doi: 10.1016/j.jmst.2020.02.039
29 Wang D, Huang P Z, Wu R Z, et al. Synergistically improved strength and damping capacity of Mg-Li-Y-Er-Zn-Zr alloy by ultra-high pressure treatment [J]. Mater. Sci. Eng, 2024, A915: 147205
30 Meier J M, Caris J, Luo A A. Towards high strength cast Mg-RE based alloys: Phase diagrams and strengthening mechanisms [J]. J. Magnes. Alloy., 2022, 10: 1401
31 Zhao H G, Pan J L, Li H, et al. Spherical strengthening precipitate in a Mg-10wt%Y alloy with superhigh pressure aging [J]. Mater. Lett., 2013, 96: 16
32 Fu H, Li H, Fang D Q, et al. High ductility of a bi-modal Mg-7wt.%Y alloy at low temperature prepared by high pressure boriding and semi-solid extrusion [J]. Mater. Des., 2016, 92: 240
33 Fu H, Liu N, Zhang Z W, et al. Effect of super-high pressure on microstructure and mechanical properties of Mg97Zn1Y2 alloys [J]. J. Magnes. Alloy., 2016, 4: 302
34 Matsushita M, Masuda K, Waki R, et al. Ultrafine spherulite Mg alloy with high yield strength [J]. J. Alloys Compd., 2019, 784: 1284
35 Matsushita M, Sakata Y, Senzaki T, et al. Phase relations among D03, α-Mg, and long-period stacking orders in Mg85Zn6Y9 alloy under 3 GPa [J]. Mater. Trans., 2015, 56: 910
36 Matsushita M, Yamamoto S, Nishiyama N, et al. D03 + hcp mixed phase with nanostructures in Mg85Zn6Y9 alloy obtained by high-pressure and high-temperature treatments [J]. Mater. Lett., 2015, 155: 11
37 Haque N, Cochrane R F, Mullis A M. Rapid solidification morphologies in Ni3Ge: Spherulites, dendrites and dense-branched fractal structures [J]. Intermetallics, 2016, 76: 70
38 Zhou L T, Niu T T, Zou G D, et al. High-strong-ductile magnesium alloys by interactions of nanoscale quasi-long period stacking order unit with twin [J]. J. Magnes. Alloy., 2024, 12: 4953
39 Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
40 Feng J W, Pan Y K, Yang M, et al. A lactoglobulin-composite self-healing coating for Mg alloys [J]. ACS Appl. Bio Mater., 2021, 4: 6843
doi: 10.1021/acsabm.1c00560 pmid: 35006984
41 Zhu Q C, Li Y X, Cao F Y, et al. Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film [J]. Nat. Commun., 2022, 13: 5838
doi: 10.1038/s41467-022-33480-w pmid: 36192418
42 Peng Q M, Zhao S S, Li H, et al. High pressure solidification: An effective approach to improve the corrosion properties of Mg-Y based implants [J]. Int. J. Electrochem. Sci., 2012, 7: 5581
43 Yang M, Feng J W, Hu H D, et al. Microstructure and corrosion resistance of ultrahigh pressure Mg-8Li based alloys [J]. J. Alloys Compd., 2023, 966: 171543
44 Deng M, Wang L Q, Höche D, et al. Approaching “stainless magnesium” by Ca micro-alloying [J]. Mater. Horiz., 2021, 8: 589
doi: 10.1039/d0mh01380c pmid: 34821275
45 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
46 Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, 9: 1837
47 Chen J, Sakai T, Kitamura N, et al. High-pressure synthesis of amorphous MgNi1.02H2.2 [J]. J. Am. Chem. Soc., 2001, 123: 6193
pmid: 11414860
48 Takamura H, Kakuta H, Kamegawa A, et al. Crystal structure of novel hydrides in a Mg-Ni-H system prepared under an ultra high pressure [J]. J. Alloys Compd., 2002, 330-332: 157
49 Kataoka R, Goto Y, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-Ni-H and Mg-Ni-Cu-H systems [J]. J. Alloys Compd., 2007, 446-447: 142
50 Kataoka R, Kamegawa A, Takamura H, et al. High pressure synthesis of novel Mg (Ni1 - x Cu x )2 hydrides (x = 0-0.2) [J]. Mater. Trans., 2009, 50: 1179
51 Kataoka R, Goto Y, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-Ni(-H) system [J]. Mater. Trans., 2006, 47: 1957
52 Kamata Y, Kuriiwa T, Kamegawa A, et al. Effect of Cu or Ti substitution in MgNi on crystal structure and hydrogen absorption-desorption properties [J]. Mater. Trans., 2009, 50: 2064
53 Peng X Y, Liu B Z, Zhao X, et al. Effects of ultra-high pressure on phase compositions, phase configurations and hydrogen storage properties of LaMg4Ni alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 14661
54 Fu H, Wu W S, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5wt%Ni alloys with dendrite interface [J]. J. Power Sources, 2016, 320: 212
55 Sun Y, Wang D B, Wang J M, et al. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure [J]. Int. J. Hydrogen Energy, 2019, 44: 23179
56 Torres B, Martínez-Lope M J, Alonso J A, et al. Short communication: High-pressure synthesis and crystal structure of a novel Mg3CuH x ternary hydride [J]. Int. J. Hydrogen Energy, 2013, 38: 15264
57 Kyoi D, Sato T, Rönnebro E, et al. A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique [J]. J. Alloys Compd., 2004, 375: 253
58 Moser D, Bull D J, Sato T, et al. Structure and stability of high pressure synthesized Mg-TM hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as possible new hydrogen rich hydrides for hydrogen storage [J]. J. Mater. Chem., 2009, 19: 8150
59 Goto Y, Kakuta H, Kamegawa A, et al. High-pressure synthesis of novel hydride in Mg-M systems (M = Li, Pd) [J]. J. Alloys Compd., 2005, 404-406: 448
60 Retuerto M, Sánchez-Benítez J, Rodríguez-Cañas E, et al. High-pressure synthesis of Mg2FeH6 complex hydride [J]. Int. J. Hydrogen Energy, 2010, 35: 7835
61 Goto Y, Kamegawa A, Takamura H, et al. Synthesis of new hydrides in Mg-Y systems by using high pressure [J]. Mater. Trans., 2002, 43: 2717
[1] WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. 金属学报, 2025, 61(3): 372-382.
[2] ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 361-371.
[3] HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 397-419.
[4] ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. 金属学报, 2025, 61(3): 488-498.
[5] JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings[J]. 金属学报, 2025, 61(3): 383-396.
[6] WANG Binshan, XU Guang, REN Rui, ZHANG Qiang, SHAN Zhaohui, FAN Jianfeng. Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion[J]. 金属学报, 2025, 61(1): 129-142.
[7] MENG Ze, LI Guangqiang, LI Tengfei, ZHENG Qing, ZENG Bin, LIU Yu. Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel[J]. 金属学报, 2024, 60(9): 1229-1238.
[8] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[9] LIU Yong, ZENG Gang, LIU Hong, WANG Yu, LI Jianlong. Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr[J]. 金属学报, 2024, 60(2): 129-142.
[10] YANG Binbin, SONG Yuanyuan, HAO Long, JIANG Haichang, RONG Lijian. Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition[J]. 金属学报, 2024, 60(12): 1656-1666.
[11] ZHOU Xiaowei, JING Xueyan, FU Ruixue, WANG Yuxin. Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys[J]. 金属学报, 2024, 60(11): 1499-1511.
[12] ZENG Yunpeng, YAN Wei, SHI Xianbo, YAN Maocheng, SHAN Yiyin, YANG Ke. Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. 金属学报, 2024, 60(1): 43-56.
[13] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[14] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[15] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
No Suggested Reading articles found!