Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 361-371    DOI: 10.11900/0412.1961.2024.00358
Overview Current Issue | Archive | Adv Search |
Multi-Slips and Ductility Regulation of Magnesium Alloys
ZENG Xiaoqin1,2(), YU Mingdi1,2, WANG Jingya1,2
1 National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
2 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys. Acta Metall Sin, 2025, 61(3): 361-371.

Download:  HTML  PDF(2064KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Despite recent advancements in enhancing their absolute strength, magnesium alloys continue to face significant challenges due to their limited ductility and formability. This strength-ductility trade-off restricts the use of magnesium components in processing applications. This work explores the potential of improving the ductility of magnesium alloys by focusing on their crystal properties and plastic deformation mechanisms. The concept of multi-slips promoting ductility is proposed as a solution. By tailoring solute atoms and regulating the critical resolved shear stress ratios of basal and nonbasal slip systems through temperature adjustments, additional slip systems can be activated, thereby reducing plastic deformation anisotropy. External modifications, such as refining grain size or introducing deformable phases, can activate new plastic deformation mechanisms beyond dislocation slip. These adjustments offer methods to accommodate the plastic strain of magnesium alloys, presenting new perspectives for enhancing magnesium ductility and formability.

Key words:  magnesium alloy      plastic deformation      strength and ductility      dislocation      multi-slip     
Received:  29 October 2024     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52425101);National Natural Science Foundation of China(52471012)
Corresponding Authors:  ZENG Xiaoqin, professor, Tel: (021)54740838, E-mail: xqzeng@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00358     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/361

Fig.1  Schematics of slip and twinning deformation mechanisms in magnesium single crystal
(a) basal (b) prismatic (c) pyramidal I
(d) pyramidal II (e) extension twin (f) constraction twin
Fig.2  Effective shear strains (γeff) showing the slip morphology for grains deforming by basal slip (a), diffuse prismatic slip (b), and wavy prismatic slip (c) (White arrows in Fig.2a point to hard particles interacting with slip. Additionally, a hexagonal prism showing the crystallographic orientation and the slip traces for the three main active slip systems at room temperature in magnesium with Schmid factors m > 0.1 are displayed for each grain)[18]
Fig.3  Engineering stress-strain curves of Mg-Zn-Ca alloys loading along the a-axis based on the micropillar compression method (D: [101¯0] indicates the loading direction of the grain crystal) (a); SEM images and schematics of crystallographic orientations of micropillar surface slip traces analysed from front (b) and back (c, d) views[45]
Fig.4  Room-temperature tensile failure strain, as a measure of ductility, versus grain size in selected polycrystalline Mg and Mg alloys[23]
Fig.5  Schematic of the deformation mechanisms in the Mg-6Al-1Ca alloy[56] (GB—grain boundary, GNDs—geometrically necessary dislocations)
1 Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
2 Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
3 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
4 Yang B B, Wang J, Li Y P, et al. Deformation mechanisms of dual-textured Mg-6.5Zn alloy with limited tension-compression yield asymmetry [J]. Acta Mater., 2023, 248: 118766
5 Chen Y W, Wang J Y, Zheng W S, et al. CALPHAD-guided design of Mg-Y-Al alloy with improved strength and ductility via regulating the LPSO phase [J]. Acta Mater., 2024, 263: 119521
6 Conrad H, Robertson W D. Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals [J]. JOM, 1957, 9(4): 503
7 Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
8 Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
9 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
10 Yu M D, Cui Y C, Wang J Y, et al. Critical resolved shear stresses for slip and twinning in Mg-Y-Ca alloys and their effect on the ductility [J]. Int. J. Plast., 2023, 162: 103525
11 El Kadiri H, Barrett C D, Wang J, et al. Why are $\left\{ 10\bar{1}2 \right\}$ twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
12 Wang J Y, Molina-Aldareguía J M, LLorca J. Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys [J]. Acta Mater., 2020, 188: 215
13 Sułkowski B, Chulist R. Twin-induced stability and mechanical properties of pure magnesium [J]. Mater. Sci. Eng., 2019, A749: 89
14 Wang T, Zha M, Gao Y P, et al. Deformation mechanisms in a novel multiscale hetero-structured Mg alloy with high strength-ductility synergy [J]. Int. J. Plast., 2023, 170: 103766
15 Ma E, Liu C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off [J]. Prog. Mater. Sci., 2024, 143: 101252
16 Li B, Zhang Q W, Mathaudhu S N. Basal-pyramidal dislocation lock in deformed magnesium [J]. Scr. Mater., 2017, 134: 37
17 Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
18 Orozco-Caballero A, Lunt D, Robson J D, et al. How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study [J]. Acta Mater., 2017, 133: 367
19 Zeng Z R, Nie J F, Xu S W, et al. Super-formable pure magnesium at room temperature [J]. Nat. Commun., 2017, 8: 972
doi: 10.1038/s41467-017-01330-9 pmid: 29042555
20 Wang J, Yuan Y, Chen T, et al. Multi-solute solid solution behavior and its effect on the properties of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1786
21 Sandlöbes S, Friák M, Korte-Kerzel S, et al. A rare-earth free magnesium alloy with improved intrinsic ductility [J]. Sci. Rep., 2017, 7: 10458
doi: 10.1038/s41598-017-10384-0 pmid: 28874798
22 Yasi J A, Hector L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
23 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716 pmid: 29371467
24 Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
25 Barnett M R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins [J]. Mater. Sci. Eng., 2007, A464: 8
26 Ma X, Zha M, Wang S Q, et al. A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries [J]. J. Magnes. Alloy., 2022, 10: 2889
27 Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy [J]. Int. J. Plast., 2021, 146: 103108
28 Dong Q, Luo Z, Zhu H, et al. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects [J]. J. Mater. Sci. Technol., 2018, 34: 1773
doi: 10.1016/j.jmst.2018.02.009
29 Wang C, Zhang H Y, Wang H Y, et al. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations [J]. Scr. Mater., 2013, 69: 445
30 Ding Z G, Zhao G X, Sun H, et al. Alloying effects on the plasticity of magnesium: Comprehensive analysis of influences of all five slip systems [J]. J. Phys.: Condens. Matter, 2020, 32: 015401
31 Garg P, Adlakha I, Solanki K N. Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study [J]. Acta Mater., 2018, 153: 327
32 Zeng Y, Shi O L, Jiang B, et al. Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition [J]. J. Alloy. Compd., 2018, 764: 555
33 Liu Z R, Li D Y. The electronic origin of strengthening and ductilizing magnesium by solid solutes [J]. Acta Mater., 2015, 89: 225
34 Wu Z X, Curtin W A. Mechanism and energetics of <c + a> dislocation cross-slip in hcp metals [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 11137
35 Shang S L, Wang W Y, Zhou B C, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys:A first-principles study of shear deformation [J]. Acta Mater., 2014, 67: 168
36 Ding Z G, Liu W, Sun H, et al. Origins and dissociation of pyramidal <c + a> dislocations in magnesium and its alloys [J]. Acta Mater., 2018, 146: 265
37 Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys [J]. Acta Mater., 2012, 60: 3011
38 Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
39 Ma X L, Jiao Q, Kecskes L J, et al. Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg-Al binary alloy [J]. Acta Mater., 2020, 189: 35
40 Wang L Y, Huang Z H, Wang H M, et al. Study of slip activity in a Mg-Y alloy by in situ high energy X-ray diffraction microscopy and elastic viscoplastic self-consistent modeling [J]. Acta Mater., 2018, 155: 138
41 Huang Z H, Wang L Y, Zhou B J, et al. Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction [J]. Scr. Mater., 2018, 143: 44
42 Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
43 Liu Y, Li N, Arul Kumar M, et al. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars [J]. Acta Mater., 2017, 135: 411
44 Lilleodden E. Microcompression study of Mg (0001) single crystal [J]. Scr. Mater., 2010, 62: 532
45 Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
46 Wang J Y, Li N, Alizadeh R, et al. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys [J]. Acta Mater., 2019, 170: 155
doi: 10.1016/j.actamat.2019.03.027
47 Wu J, Si S S, Takagi K, et al. Study of basal <a> and pyramidal<c + a> slips in Mg-Y alloys using micro-pillar compression [J]. Philos. Mag., 2020, 100: 1454
48 Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals [J]. Acta Mater., 2011, 59: 1986
49 Shin K S, Wang L F, Bian M Z, et al. Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling [J]. J. Magnes. Alloy., 2023, 11: 2027
50 Qi X X, Li Y X, Xu X Y, et al. Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates [J]. J. Mater. Sci. Technol., 2023, 166: 123
doi: 10.1016/j.jmst.2023.05.029
51 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
52 Zhu G M, Wang L Y, Sun Y J, et al. Grain-size effect on the deformation of Mg-3Al-3Sn alloy: Experiments and elastic-viscoplastic self-consistent modeling [J]. Int. J. Plast., 2021, 143: 103018
53 Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed high-strength and low-alloyed magnesium alloy [J]. Mater. China, 2020, 39: 31
程仁山, 潘虎成, 谢东升 等. 新型高强度低合金化镁合金研究进展 [J]. 中国材料进展, 2020, 39: 31
54 Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
55 Liu B Y, Zhang Z, Liu F, et al. Rejuvenation of plasticity via deformation graining in magnesium [J]. Nat. Commun., 2022, 13: 1060
56 Zhu G M, Wang L Y, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates [J]. Acta Mater., 2020, 200: 236
57 Luo S Z, Wang L Y, Wang J Y, et al. Micro-compression of Al2Ca particles in a Mg-Al-Ca alloy [J]. Materialia, 2022, 21: 101300
58 Chen R, Sandlöbes S, Zeng X Q, et al. Room temperature deformation of LPSO structures by non-basal slip [J]. Mater. Sci. Eng., 2017, A682: 354
59 Li Q, Song J, Chen Y W, et al. In-situ TEM characterization of basal dislocations between nano-spaced long-period stacking ordered phases in MgYZn alloy [J]. Scr. Mater., 2023, 235: 115601
[1] HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 397-419.
[2] WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. 金属学报, 2025, 61(3): 372-382.
[3] JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings[J]. 金属学报, 2025, 61(3): 383-396.
[4] ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. 金属学报, 2025, 61(3): 488-498.
[5] FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. 金属学报, 2025, 61(3): 475-487.
[6] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[7] WANG Binshan, XU Guang, REN Rui, ZHANG Qiang, SHAN Zhaohui, FAN Jianfeng. Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion[J]. 金属学报, 2025, 61(1): 129-142.
[8] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[9] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[10] WANG Yanxu, GONG Wu, SU Yuhua, LI Bing. Application of Neutron Characterization Techniques to Metallic Structural Materials[J]. 金属学报, 2024, 60(8): 1001-1016.
[11] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[12] YANG Ruize, ZHAI Ruzong, REN Shaofei, SUN Mingyue, XU Bin, QIAO Yanxin, YANG Lanlan. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. 金属学报, 2024, 60(7): 915-925.
[13] BAI Zhiwen, DING Zhigang, ZHOU Ailong, HOU Huaiyu, LIU Wei, LIU Feng. Molecular Dynamics Simulation of Thermo-Kinetics of Tensile Deformation of α-Fe Single Crystal[J]. 金属学报, 2024, 60(6): 848-856.
[14] LI Zhenliang, ZHANG Xinlei, TIAN Dongkuo. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy[J]. 金属学报, 2024, 60(3): 311-322.
[15] BAI Juju, LI Jianjian, FU Chonglong, CHEN Shuangjian, LI Zhijun, LIN Jun. Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature[J]. 金属学报, 2024, 60(3): 299-310.
No Suggested Reading articles found!