|
|
Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact |
CHEN Yang, MAO Pingli( ), LIU Zheng, WANG Zhi, CAO Gengsheng |
Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact. Acta Metall Sin, 2022, 58(5): 660-672.
|
Abstract To investigate the detwinning behaviors and dynamic mechanical properties of a precompressed rolled AZ31 magnesium alloy sheet impacted under high strain rates, the as-received sheet was precompressed along the rolling direction (RD) to the true strain of 4% for inducing { } tensile twins. The as-received and precompressed rolled AZ31 magnesium alloy sheets were impacted along the normal direction (ND) using a split Hopkinson pressure bar experiment apparatus at strain rates of 700, 1000, 1300, and 1600 s-1. Microstructural characteristics of the as-received, precompressed, and impacted specimens were analyzed and compared by an electron backscatter diffraction technology. The results show that in the precompressed specimen, the density of the basal texture was weakened and a new twin texture with the c-axis paralled to RD was formed. The average grain size of the precompressed specimen decreased visibly as a result of the parent grains being subdivided by tensile twin boundaries. The dominant deformation mechanism of the precompressed rolled AZ31 magnesium alloy impacted along ND is detwinning. With increasing the strain rate, the initial basal texture recovered, the average grain size increased, and the average twin thickness decreased. Compared with the precompressed specimen, the as-received specimen impacted along ND exhibited higher strength and lower formability. The precompressed specimen demonstrated greater strain rate sensitivity during plastic deformation.
|
Received: 23 March 2021
|
|
Fund: Liaoning Revitalization Talents Program(XLYC1908006) |
About author: MAO Pingli, professor, Tel: 13940396212, E-mail: maopl@sut.edu.cn
|
1 |
Watanabe H, Ishikawa K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., 2009, A523: 304
|
2 |
Khosravani A, Fullwood D T, Adams B L, et al. Nucleation and propagation of { 10 1 ¯ 2 } twins in AZ31 magnesium alloy [J]. Acta Mater., 2015, 100: 202
doi: 10.1016/j.actamat.2015.08.024
|
3 |
Shan Z W, Liu B Y. The mechanism of { 10 1 ¯ 2 } deformation twinning in magnesium [J]. Acta Metall. Sin., 2016, 52: 1267
|
|
单智伟, 刘博宇. Mg的{ 10 1 ¯ 2 }形变孪晶机制 [J]. 金属学报, 2016, 52: 1267
|
4 |
Li X D, Mao P L, Liu Y Y, et al. Anisotropy and deformation mechanisms of as-extruded Mg-3Zn-1Y magnesium alloy under high strain rates [J]. Acta Metall. Sin., 2018, 54: 557
|
|
李旭东, 毛萍莉, 刘晏宇 等. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制 [J]. 金属学报, 2018, 54: 557
doi: 10.11900/0412.1961.2017.00147
|
5 |
Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys [J]. Acta Mater., 2014, 81: 442
doi: 10.1016/j.actamat.2014.08.052
|
6 |
Lou C, Zhang X Y, Ren Y. Twinning characteristic of AZ31 magnesium alloy during dynamic plastic deformation [J]. Chin. J. Nonferrous Met., 2015, 25: 2642
|
|
娄 超, 张喜燕, 任 毅. 动态塑性变形下AZ31镁合金的孪生特征 [J]. 中国有色金属学报, 2015, 25: 2642
|
7 |
Wu W, Gao Y F, Li N, et al. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys [J]. Acta Mater., 2016, 121: 15
doi: 10.1016/j.actamat.2016.08.058
|
8 |
Huang H T, Godfrey A, Zheng J P, et al. Influence of local strain on twinning behavior during compression of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2015, A640: 330
|
9 |
Wang B S, Deng L P, Chapuis A, et al. Study of twinning behavior of AZ31 Mg alloy during plane strain compression [J]. Acta Metall. Sin., 2015, 51: 1441
|
|
汪炳叔, 邓丽萍, Chapuis A 等. AZ31镁合金在平面应变压缩过程中的孪生行为研究 [J]. 金属学报, 2015, 51: 1441
doi: 10.11900/0412.1961.2015.00215
|
10 |
Yan Y Q, Luo J R, Zhang J S, et al. Study on the microstructural evolution and mechanical properties control of a strong textured AZ31 magnesium alloy sheet during cryorolling [J]. Acta Metall. Sin., 2017, 53: 107
|
|
闫亚琼, 罗晋如, 张济山 等. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究 [J]. 金属学报, 2017, 53: 107
doi: 10.11900/0412.1961.2016.00134
|
11 |
Hong S G, Park S H, Lee C S. Role of { 10 1 ¯ 2 } twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy [J]. Acta Mater., 2010, 58: 5873
doi: 10.1016/j.actamat.2010.07.002
|
12 |
Hou D W, Li Q Z, Wen H M. Study of reversible motion of { 10 1 ¯ 2 } tensile twin boundaries in a magnesium alloy during strain path changes [J]. Mater. Lett., 2018, 231: 84
doi: 10.1016/j.matlet.2018.08.019
|
13 |
Lee J U, Song S W, Kim Y, et al. Effects of { 10 1 ¯ 2 } twins on dynamic torsional properties of extruded AZ31 magnesium alloy [J]. Met. Mater. Int., 2018, 24: 283
doi: 10.1007/s12540-018-0030-x
|
14 |
Mokdad F, Chen D L, Li D Y. Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction [J]. J. Alloys Compd., 2018, 737: 549
doi: 10.1016/j.jallcom.2017.12.043
|
15 |
Chen H C, Liu T M, Hou D W, et al. Improving the mechanical properties of a hot-extruded AZ31 alloy by { 10 1 ¯ 2 } twinning lamella [J]. J. Alloys Compd., 2016, 680: 191
doi: 10.1016/j.jallcom.2016.04.106
|
16 |
Park S H, Hong S G, Lee J H, et al. Texture evolution of rolled Mg-3Al-1Zn alloy undergoing a { 10 1 ¯ 2 } twinning dominant strain path change [J]. J. Alloys Compd., 2015, 646: 573
doi: 10.1016/j.jallcom.2015.05.194
|
17 |
Long Z X, Liu T M, He J J, et al. The effects of pre-strain and subsequent annealing on the yielding behavior in a rolled magnesium alloy AZ31 [J]. J. Mater. Eng. Perform., 2015, 24: 16
doi: 10.1007/s11665-014-1284-1
|
18 |
Song B, Xin R L, Sun L Y, et al. Enhancing the strength of rolled ZK60 alloys via the combined use of twinning deformation and aging treatment [J]. Mater. Sci. Eng., 2013, A582: 68
|
19 |
Sun Q, Xia T, Tan L, et al. Influence of { 10 1 ¯ 2 } twin characteristics on detwinning in Mg-3Al-1Zn alloy [J]. Mater. Sci. Eng., 2018, A735: 243
|
20 |
Sarker D, Friedman J, Chen D L. De-twinning and texture change in an extruded AM30 magnesium alloy during compression along normal direction [J]. J. Mater. Sci. Technol., 2015, 31: 264
doi: 10.1016/j.jmst.2014.11.018
|
21 |
Huang H T, Godfrey A, Liu W, et al. Study on twinning behaviors during multi-directional compression for AZ31 magnesium alloy by EBSD [J]. J. Chin. Electron Microsc. Soc., 2011, 30: 294
|
|
黄洪涛, Godfrey A, 刘 伟 等. 多向压缩路径下AZ31镁合金孪生行为的EBSD研究 [J]. 电子显微学报, 2011, 30: 294
|
22 |
Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and { 10 1 ¯ 2 } twin lamellar structure on the mechanical properties of Mg alloy [J]. Acta Metall. Sin., 2013, 49: 291
doi: 10.3724/SP.J.1037.2012.00582
|
|
娄 超, 张喜燕, 汪润红 等. 退孪生行为以及{ 10 1 ¯ 2 }孪晶片层结构对镁合金力学性能的影响 [J]. 金属学报, 2013, 49: 291
|
23 |
Proust G, Tomé C N, Jain A, et al. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 [J]. Int. J. Plast., 2009, 25: 861
doi: 10.1016/j.ijplas.2008.05.005
|
24 |
Wang R F, Mao P L, Liu Y Y, et al. Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys [J]. Mater. Sci. Eng., 2018, A742: 309
|
25 |
Yu Q, Wang J, Jiang Y Y, et al. Twin-twin interactions in magnesium [J]. Acta Mater., 2014, 77: 28
doi: 10.1016/j.actamat.2014.05.030
|
26 |
Guan D K, Rainforth W M, Gao J H, et al. Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1—double twins [J]. Acta Mater., 2017, 135: 14
doi: 10.1016/j.actamat.2017.06.015
|
27 |
Wang X X, Mao P L, Wang R F, et al. Role of { 10 1 ¯ 2 } twinning in the anisotropy and asymmetry of AZ31 magnesium alloy under high strain rate deformation [J]. Mater. Sci. Eng., 2020, A772: 138814
|
28 |
Xiao J, Shu D W. Compressive behavior and constitutive analysis of AZ31B magnesium alloy over wide range of strain rates and temperatures [J]. Met. Mater. Int., 2015, 21: 823
doi: 10.1007/s12540-015-5120-4
|
29 |
Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression [J]. Trans. Mater. Heat Treat., 2013, 34(8): 26
|
|
张 愔, 刘天模, 徐 舜 等. 挤压态AZ31镁合金单向压缩过程中的退孪生行为 [J]. 材料热处理学报, 2013, 34(8): 26
|
30 |
Guo L L, Chen Z C, Gao L. Effects of grain size, texture and twinning on mechanical properties and work-hardening behavior of AZ31 magnesium alloys [J]. Mater. Sci. Eng., 2011, A528: 8537
|
31 |
Xi G Q, Chen Y, Chen S, et al. Study on twinning-detwinning behavior of magnesium alloy by Situ EBSD [J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2020, 34(9): 147
|
|
席国强, 陈 艺, 陈 爽 等. 镁合金中孪生-退孪生行为的原位EBSD研究 [J]. 重庆理工大学学报(自然科学版), 2020, 34(9): 147
|
32 |
Chen Y, Mao P L, Wang Z, et al. High strain rate deformation behaviors experimental study and numerical simulation of rolled AZ31 magnesium alloy loaded along different directions [J]. Chin. J. Nonferrous Met., 2020, 30: 997
|
|
陈 扬, 毛萍莉, 王志 等. 不同加载方向时轧制态AZ31镁合金高速变形行为的实验研究与数值模拟 [J]. 中国有色金属学报, 2020, 30: 997
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|