Research Advances in High Temperature Corrosion of Ni-Cr Alloys in CO2-Rich Environments
XIE Yun1(), Zhang Jianqiang2, PENG Xiao1
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2 School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
Cite this article:
XIE Yun, Zhang Jianqiang, PENG Xiao. Research Advances in High Temperature Corrosion of Ni-Cr Alloys in CO2-Rich Environments. Acta Metall Sin, 2024, 60(6): 731-742.
The thermal power generation industry in China is facing heavy pressure from environmental protection sectors as the “emission peak-carbon neutrality” goal has been proposed. Oxyfuel combustion and operating with high steam parameters are considered promising technologies that can effectively reduce CO2 emissions from coal-fired power plants. However, using these two technologies, the currently used ferritic/martensitic heat-resistant steels and austenitic stainless steels in traditional boilers cannot meet the requirements of good creep strength and corrosion resistance to hot CO2-rich gasses. Thus, nickel-based alloys must be considered. Given that flue gasses related to oxyfuel combustion are characterized by high CO2 concentrations, this work reviews recent research progress on the high-temperature corrosion of Ni-Cr alloys in CO2-rich gasses. Herein, the effect of CO2 on protective Cr2O3 scale formation is introduced, and the related carburization mechanism caused by CO2 ingress is clarified. Moreover, the impacts of H2O(g), SO2, temperature, and alloying elements on the high temperature resistance of Ni-Cr alloys in CO2-rich gasses are summarized. Based on the current findings, future research on high-temperature corrosion of Ni-Cr alloys in CO2-rich gases should focus on the following key points, such as analyzing the microstructure of Cr2O3 scales formed in different gasses; elucidating the interaction of CO2, H2O(g), and SO2 molecules with rare earth elements at grain boundaries of oxide scales; and investigating the effect of HCl(g) impurities in CO2-rich gasses on Cr2O3 scaling of Ni-Cr alloys.
Fund: National Natural Science Foundation of China(52301089);Jiangxi Provincial Key Research and Development Program(20232BBE50007);Jiangxi Provincial Natural Science Foundation(20224BAB214018)
Corresponding Authors:
XIE Yun, associate professor, Tel: 15827996962, E-mail: yun.xie@nchu.edu.cn
Fig.1 Cross-sectional SEM images of Ni-30Cr exposed at 650oC for 310 h in Ar + 20O2 (a)[36] and Ar + 20CO2 (b)[37] atmospheres (volume fraction, %)
Fig.2 SEM images of carbides precipitated along the grain boundaries in Ni-25Cr (a) and Ni-30Cr (b) exposed at 700oC for 500 h in Ar + 20CO2 atmosphere[37]
Fig.3 Atom probe tomography (APT) images of Cr2O3 scale grown on Fe-20Cr exposed at 650oC in Ar + 20O2 and subsequently in Ar + 20CO2[60]
Fig.4 Cross-sectional SEM images of Ni-15Cr alloy exposed at 650oC for 310 h in Ar + 20CO2 (a) and Ar + 20CO2 + 20H2O(b), and pure Ni exposed at 650oC for 150 h in Ar + 20CO2 (c) and Ar + 20CO2 + 20H2O (d)[42]
Fig.5 Cross-sectional SEM images of Ni-30Cr alloy exposed at 800oC for 500 h in Ar + 20CO2 + 20H2O (a) and Ar + 20CO2 (b), and cross-sectional BF-TEM images of corresponding scales formed in Ar + 20CO2 + 20H2O (c, d) and Ar + 20CO2 (e) (Fig.5c is the magnified image at the scale-alloy interface formed in Ar + 20CO2 + 20H2O)[75]
T / oC
/ (cm2·s-1)
650
2.6 × 10-15
0.31
> 0.68
700
1.4 × 10-14
0.28
0.39
800
2.3 × 10-13
0.24
0.16
Table 1 Values of , , and of Ni-Cr alloys corroded in Ar + 20CO2 at different temperatures[36,37,75]
Fig.6 Cross-sectional SEM images of Ni-25Cr alloy exposed at 650oC (a), 700oC (b), and 800oC (c) for 500 h in Ar + 20CO2[37]
Fig.7 SEM images of carbide precipitates in Ni-30Cr-2Ti alloy exposed at 700oC for 20 h (a) and 500 h (b) in Ar + 20CO2 + 20H2O[73]
1
Zhang S H, Hu K, Liu X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metall. Sin., 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115 [J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
Stanger R, Wall T, Spörl R, et al. Oxyfuel combustion for CO2 capture in power plants [J]. Int. J. Greenhouse Gas Control, 2015, 40: 55
4
Zheng C G, Liu Z H, Xiang J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology [J]. Engineering, 2015, 1: 139
5
Liu J H. Research and development of oxy-fuel combustion for coal-fired boiler in China [J]. Therm. Power Gener., 2020, 49(7): 48
刘建华. 国内燃煤锅炉富氧燃烧技术进展 [J]. 热力发电, 2020, 49(7): 48
6
Bordenet B. Influence of novel cycle concepts on the high-temperature corrosion of power plants [J]. Mater. Corros., 2008, 59: 361
7
Buhre B J P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Prog. Energy Combust. Sci., 2005, 31: 283
8
Syed A U, Simms N J, Oakey J E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass [J]. Fuel, 2012, 101: 62
9
Zeng Z, Natesan K, Cai Z, et al. Effect of coal ash on the performance of alloys in simulated oxy-fuel environments [J]. Fuel, 2014, 117: 133
10
Syed A U, Hussain T, Simms N J, et al. Microscopy of fireside corrosion on superheater materials for oxy-fired pulverised fuel power plants [J]. Mater. High Temp., 2012, 29: 219
11
Stein-Brzozowska G, Maier J, Scheffknecht G. Impact of the oxy-fuel combustion on the corrosion behavior of advanced austenitic superheater materials [J]. Energy Procedia, 2011, 4: 2035
12
Holcomb G R, Tylczak J, Meier G H, et al. Fireside corrosion in oxy-fuel combustion of coal [J]. Oxid. Met., 2013, 80: 599
13
Abellán J P, Olszewski T, Meier G H, et al. The oxidation behaviour of the 9% Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments [J]. Int. J. Mater. Res., 2010, 101: 287
14
Huczkowski P, Najima S, Chyrkin A, et al. Corrosion behavior of austenitic stainless steels in oxidizing and reducing gases relevant to oxyfuel power plants [J]. JOM, 2018, 70: 1502
15
Zheng Y, Shirani Bidabadi M H, Yang L, et al. Pre-oxidation effect on oxidation behavior of F91 in carbon dioxide at 550oC [J]. Oxid. Met., 2018, 90: 317
16
Xi X T, Kong C, Zhang J Q. Effect of cyclic reaction on corrosion behavior of chromium-containing alloys in CO2 gas at 650oC [J]. Oxid. Met., 2020, 93: 131
17
Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700oC coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
Sun F, Gu Y F, Yan J B, et al. Phenomenological and microstructural analysis of intermediate temperatures creep in a Ni-Fe-based alloy for advanced ultra-supercritical fossil power plants [J]. Acta Mater., 2016, 102: 70
23
Xu Y X, Lu J T, Li W Y, et al. Effect and role of alloyed yttrium on the fireside corrosion behaviour of Ni-Fe based alloys for 750oC ultra-supercritical boiler applications [J]. Corros. Sci., 2018, 143: 148
24
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. 2nd Ed., Cambridge: Cambridge University Press, 2006: 115
25
Young D J, Zhang J Q. Alloy corrosion by hot CO2 gases [J]. JOM, 2018, 70: 1493
26
Rouillard F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2 [J]. Corros. Sci., 2016, 105: 120
27
Huenert D, Kranzmann A. Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels [J]. Corros. Sci., 2011, 53: 2306
28
Meier G H, Jung K, Mu N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys [J]. Oxid. Met., 2010, 74: 319
29
Nguyen T D, Zhang J Q, Young D J. Growth of Cr2O3 blades during alloy scaling in wet CO2 gas [J]. Corros. Sci., 2018, 133: 432
30
Nguyen T D, La Fontaine A, Cairney J M, et al. Effects of Si, Mn, and water vapour on the microstructure of protective scales grown on Fe-20Cr in CO2 gas [J]. Mater. High Temp., 2018, 35: 22
31
Yu C, Nguyen T D, Zhang J Q, et al. Sulfur effect on corrosion behavior of Fe-20Cr-(Mn, Si) and Fe-20Ni-20Cr-(Mn, Si) in CO2-H2O at 650oC [J]. J. Electrochem. Soc., 2016, 163: C106
32
Oleksak R P, Tylczak J H, Teeter L, et al. High-temperature corrosion of chromia-forming Ni-based alloys in CO2 containing impurities [J]. High Temp. Corros. Mater., 2023, 100: 597
33
Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corros. Sci., 2019, 157: 20
34
Zeng Z, Natesan K, Cai Z, et al. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment [J]. Fuel, 2016, 178: 10
35
Pan P Y, Li T Y, Wang Y Z, et al. Effect of temperature on hot corrosion of nickel-based alloys for 700oC A-USC power plants [J]. Corros. Sci., 2022, 203: 110350
36
Jiang C Y, Xie Y, Kong C, et al. Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650oC [J]. Corros. Sci., 2020, 174: 108801
37
Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
38
Nguyen T D, Xie Y, Ding S J, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700oC [J]. Oxid. Met., 2017, 87: 605
39
Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Z. Elektrochem., 1959, 63: 772
40
Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
41
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
42
Xie Y, Zhang J Q, Young D J. Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650oC [J]. Corros. Sci., 2018, 136: 311
43
Wagner C. The theory of the warm-up process [J]. Z. Phys. Chem., 1933, 21: 25
44
Nguyen T D, Zhang J Q, Young D J. Microstructures of chromia scales grown in CO2 [J]. Mater. High Temp., 2015, 32: 16
45
Young D J, Nguyen T D, Felfer P, et al. Penetration of protective chromia scales by carbon [J]. Scr. Mater., 2014, 77: 29
46
Zhu D D, Chen J M, Chen J Z, et al. Atomic origin of CO2-promoted oxidation dynamics of chromia-forming alloys [J]. Acta Mater., 2024, 264: 119578
47
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd Ed., Amsterdam: Elsevier, 2016: 435
48
Li T F. High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 252
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 252
49
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2 at 700oC [J]. Corros. Sci., 2018, 130: 161
50
Pirón Abellán J, Olszewski T, Penkalla H J, et al. Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments [J]. Mater. High Temp., 2009, 26: 63
51
Nguyen T D, Zhang J Q, Young D J. Martensite formation in Fe-9Cr alloys exposed to low carbon activity gas [J]. Scr. Mater., 2013, 69: 9
52
Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
53
Subramanian G O, Lee H J, Kim S H, et al. Corrosion and carburization behaviour of Ni-xCr binary alloys in a high-temperature supercritical-carbon dioxide environment [J]. Oxid. Met., 2018, 89: 683
54
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behav-ior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
55
Wolf I, Grabke H J. A study on the solubility and distribution of carbon in oxides [J]. Solid State Commun., 1985, 54: 5
56
Wolf I, Grabke H J, Schmidt P. Carbon transport through oxide scales on Fe-Cr alloys [J]. Oxid. Met., 1988, 29: 289
57
Chandra K, Kranzmann A, Saliwan Neumann R, et al. High temperature oxidation behavior of 9-12%Cr ferritic/martensitic steels in a simulated dry oxyfuel environment [J]. Oxid. Met., 2015, 83: 291
58
Otsuka N. Carburization of 9%Cr steels in a simulated oxyfuel corrosion environment [J]. Oxid. Met., 2013, 80: 565
59
Shen J, Liu S, Guo X H, et al. Simultaneous oxidation and carburization of a Fe-9Cr alloy under different oxygen pressures at 800oC [J]. Corros. Sci., 2017, 129: 1
60
Nguyen T D, La Fontaine A, Yang L M, et al. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas [J]. Corros. Sci., 2018, 132: 125
61
Becker P, Young D J. Carburization resistance of nickel-base, heat-resisting alloys [J]. Oxid. Met., 2007, 67: 267
62
Ani M H B, Kodama T, Ueda M, et al. The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K [J]. Mater. Trans., 2009, 50: 2656
63
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
64
Essuman E, Meier G H, Żurek J, et al. Enhanced internal oxidation as trigger for breakaway oxidation of Fe-Cr alloys in gases containing water vapor [J]. Scr. Mater., 2007, 57: 845
65
Liu L, Yang Z G, Zhang C, et al. Effect of water vapour on the oxidation of Fe-13Cr-5Ni martensitic alloy at 973 K [J]. Corros. Sci., 2012, 60: 90
66
Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor [J]. Oxid. Met., 2006, 66: 137
67
Young D J. Effects of water vapour on the oxidation of chromia formers [J]. Mater. Sci. Forum, 2008, 595-598: 1189
68
Holcomb G R. Calculation of reactive-evaporation rates of chromia [J]. Oxid. Met., 2008, 69: 163
69
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
70
Essuman E, Meier G H, Zurek J, et al. Protective and non-protective scale formation of NiCr alloys in water vapour containing high- and low-pO2 gases [J]. Corros. Sci., 2008, 50: 1753
71
Mu N, Jung K Y, Yanar N M, et al. Water vapor effects on the oxidation behavior of Fe-Cr and Ni-Cr alloys in atmospheres relevant to oxy-fuel combustion [J]. Oxid. Met., 2012, 78: 221
72
Mu N, Jung K, Yanar N M, et al. The effects of water vapor and hydrogen on the high-temperature oxidation of alloys [J]. Oxid. Met., 2013, 79: 461
73
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700oC [J]. Corros. Sci., 2020, 170: 108702
74
Xie Y. Corrosion behaviour of Ni-Cr-(Fe) alloys in dry and wet CO2 at high temperatures [D]. Sydney: The University of New South Wales, 2018
75
Xie Y, Nguyen T D, Zhang J Q, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800oC [J]. Corros. Sci., 2019, 146: 28
76
Auchi M, Hayashi S, Toyota K, et al. Effect of water vapor on the high-temperature oxidation of pure Ni [J]. Oxid. Met., 2012, 78: 51
77
Hamdani F, Abe H, Ter-Ovanessian B, et al. Effect of chromium content on the oxidation behavior of Ni-Cr model alloys in superheated steam [J]. Metall. Mater. Trans., 2015, 46A: 2285
78
Jiang C Y, Zhang J Q, Young D J. The effect of water vapor on NiO formation by Ni-Cr alloys at 650oC (HTCPM focus issue, FNS-111) [J]. Oxid. Met., 2021, 96: 57
79
Chen J R, Jiang C Y, Zhang J Q. Corrosion behaviors of Ni-Cr alloys in O2, H2O and H2O + O2 gases at 700oC and the effect of temperature [J]. High Temp. Corros. Mater., 2023, 100: 775
80
Anghel C, Hörnlund E, Hultquist G, et al. Gas phase analysis of CO interactions with solid surfaces at high temperatures [J]. Appl. Surf. Sci., 2004, 233: 392
81
Galerie A, Wouters Y, Caillet M. The kinetic behaviour of metals in water vapour at high temperatures: Can general rules be proposed? [J]. Mater. Sci. Forum, 2001, 369-372: 231
82
Zurek J, Young D J, Essuman E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases [J]. Mater. Sci. Eng., 2008, A477: 259
83
Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres [J]. Mater. High Temp., 2000, 17: 231
84
Michalik M, Hänsel M, Zurek J, et al. Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050oC [J]. Mater. High Temp., 2005, 22: 213
85
Simon D, Gorr B, Hänsel M, et al. Effect of in-situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000oC in atmospheres with and without water vapour [J]. Mater. High Temp., 2015, 32: 238
86
Galerie A, Petit J P, Wouters Y, et al. Water vapour effects on the oxidation of chromia-forming alloys [J]. Mater. Sci. Forum, 2011, 696: 200
87
Mrowec S, Przybylski K. Transport properties of sulfide scales and sulfidation of metals and alloys [J]. Oxid. Met., 1985, 23: 107
88
Huczkowski P, Young D J, Olszewski T, et al. Effect of sulphur on the oxidation behaviour of possible construction materials for heat exchangers in oxyfuel plants in the temperature range 550-700oC [J]. Oxid. Met., 2018, 89: 651
89
Huczkowski P, Najima S, Chyrkin A, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases relevant to oxyfuel power plants [J]. Mater. High Temp., 2018, 35: 275
90
Huczkowski P, Chyrkin A, Singheiser L, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases, relevant to oxyfuel combustion [A]. Corrosion 2016 [C]. Vancouver: NACE International, 2016: 7391
91
Pettit F. Hot corrosion of metals and alloys [J]. Oxid. Met., 2011, 76: 1
92
Gheno T, Gleeson B. On the hot corrosion of nickel at 700oC [J]. Oxid. Met., 2015, 84: 567
93
Lutz B S, Holcomb G R, Meier G H. Determination of the initiation and propagation mechanism of fireside corrosion [J]. Oxid. Met., 2015, 84: 353
94
Grégoire B, Montero X, Galetz M C, et al. Mechanisms of hot corrosion of pure nickel at 700oC: Influence of testing conditions [J]. Corros. Sci., 2018, 141: 211
95
Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
doi: 10.1016/j.jmst.2021.03.013
96
Meier G H. Invited review paper in commemoration of over 50 years of oxidation of metals: Current aspects of deposit-induced corrosion [J]. Oxid. Met., 2022, 98: 1
97
Castello P, Guttmann V, Farr N, et al. Laboratory-simulated fuel-ash corrosion of superheater tubes in coal-fired ultra-supercritical-boilers [J]. Mater. Corros., 2000, 51: 786
98
Hussain T, Syed A U, Simms N J. Fireside corrosion of superheater materials in coal/biomass co-fired advanced power plants [J]. Oxid. Met., 2013, 80: 529
99
Liu G M, Yang H C, Liang Q, et al. Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
100
Hari P R, Arivazhagan N, Rao M N, et al. Hot corrosion studies on alloy 617 OCC in the context of its use in advanced ultra-supercritical (A-USC) power plants [J]. Trans. Indian Inst. Met., 2017, 70: 775
101
Stein-Brzozowska G, Flórez D M, Maier J, et al. Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures [J]. Fuel, 2013, 108: 521
102
Sha C H, Yang L M, Cairney J M, et al. Sulphur diffusion through a growing chromia scale and effects of water vapour [J]. Corros. Sci., 2023, 222: 111410
103
Yu C, Zhang J Q, Young D J. Corrosion behaviour of Fe-Cr-(Mn, Si) ferritic alloys in wet and dry CO2-SO2 atmospheres at 650oC [J]. Oxid. Met., 2018, 90: 97
104
Othman N K, Zhang J Q, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827
105
Sánchez L, Hierro M P, Pérez F J. Effect of chromium content on the oxidation behaviour of ferritic steels for applications in steam atmospheres at high temperatures [J]. Oxid. Met., 2009, 71: 173
106
Xie Y, Du L X, Liang J J, et al. High temperature oxidation behavior of a novel γ′-strengthened CoNi-base superalloy [J]. High Temp. Corros. Mater., 2024, 101: 211
107
Pint B A, Thomson J K. Effect of oxy-firing on corrosion rates at 600-800oC [A]. Corrosion 2013 [C]. Orlando: NACE International, 2013: 2171
108
Pint B A. Simulated fireside corrosion of Ni-base alloys in oxy-fired conditions at 700-800oC [A]. ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries [C]. Seattle: ASME, 2014: 176
109
Hussain T, Syed A U, Simms N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass [J]. Fuel, 2013, 113: 787
110
Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review [J]. Prog. Mater. Sci., 2008, 53: 775
111
Raynaud G M, Rapp R A. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals [J]. Oxid. Met., 1984, 21: 89
112
Larsson K, Björkman H, Hjort K. Role of water and oxygen in wet and dry oxidation of diamond [J]. J. Appl. Phys., 2001, 90: 1026
113
Lu J T, Yang Z, Li Y, et al. Effect of alloying chemistry on fireside corrosion behavior of Ni-Fe-based superalloy for ultra-supercritical boiler applications [J]. Oxid. Met., 2018, 89: 609
114
Xu Y X, Lu J T, Yang X W, et al. Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000oC [J]. Corros. Sci., 2017, 127: 10
115
Xie Y, Zhang J Q, Young D J, et al. Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700oC [J]. Corros. Sci., 2019, 154: 129
116
Xie Y, Liang T, Zhang J Q, et al. Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800oC in dry CO2 gas [J]. Corros. Sci., 2020, 173: 108777
117
Xie Y, Zhang J Q, Young D J. Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800oC in wet CO2 gas [J]. Oxid. Met., 2020, 94: 219
118
Million B, Růžičková J, Vřešťál J. Diffusion in Fe-Ni-Cr alloys with an F.C.C. lattice [J]. Mater. Sci. Eng., 1985, 72: 85
119
Duh J G, Dayananda M A. Interdiffusion in Fe-Ni-Cr alloys at 1100oC [J]. Defect Diffus. Forum, 1991, 39: 1
120
Xu Y X, Lu J T, Huang J Y, et al. Impact of iron and chromium on coal ash corrosion behavior of Ni-Cr-Co based alloy for advanced ultra-supercritical power plants [J]. Corrosion, 2018, 74: 1446
121
Colwell J A, Rapp R A. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950oC [J]. Metall. Trans., 1986, 17A: 1065