Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys
WANG Feng1,2,3(), BAI Shengwei1,2, WANG Zhi1,2, DU Xudong1,2(), ZHOU Le1,2, MAO Pingli1,2, WEI Ziqi1,2, LI Jinwei3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang University of Technology, Shenyang 110870, China 3 Liaoning Automobile Lightweight Technology Professional Innovation Center, Liaoning Dide Technology Co. Ltd., Tieling 112611, China
Cite this article:
WANG Feng, BAI Shengwei, WANG Zhi, DU Xudong, ZHOU Le, MAO Pingli, WEI Ziqi, LI Jinwei. Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys. Acta Metall Sin, 2024, 60(6): 743-759.
Mg-Zn series alloys, an important alloy system among magnesium alloys, have garnered considerable attention due to their rich phase composition, outstanding deformability, and aging strengthening effects. These alloys demonstrate great potential for applications in the aerospace, automotive, and biomedical industries. However, the wide solidification temperature range and large shrinkage of these alloys render them largely susceptible to hot tearing, limiting their applications to a certain extent. Thus, investigating the hot tearing behavior of Mg-Zn series alloys is important. In this paper, a comprehensive summary of theories pertaining to hot tearing, the effects of alloying elements and casting process parameters on the susceptibility of Mg-Zn series alloys to hot tearing, and the current status of research on the numerical simulation of this phenomenon are presented. Furthermore, this article discusses the influence of microstructure and solidification parameters of Mg-Zn series alloys on their hot tearing susceptibility and proposes limitations and suggestions for the current research on the hot tearing behavior of magnesium alloys to guide the design and application of Mg-Zn series alloys.
Fund: Basic Scientific Research Project of Liaoning Provincial Department of Education (Key Research Project)(JYTZD2023108);High Level Innovation Team of Liaoning Province(XLYC-1908006);Liaoning Nature Fund Guidance Plan(2022-BS-179);General Project of Liaoning Provincial Department of Education(LJKMZ20220462)
Corresponding Authors:
WANG Feng, professor, Tel: 15002424621, E-mail: wf9709@126.com; DU Xudong, Tel: 13940206929, E-mail: dxd9297@126.com
Fig.1 Important parameters and stages in the solidification process of alloys[10] (TL—liquidus temperature; T—current temperature of the melt, T0.4, T0.9, T0.99—the corresponding temperatures when the solid fraction is 40%, 90%, and 99%, repectively; TS—solidus temperature)
Element
Maximum solid solution
Main secondary phase formed by
Mass fraction / %
Atomic fraction / %
alloying element in Mg-Zn alloy
Y
12.5[27]
3.75[35]
I (Mg3Zn6Y), W (Mg3Zn3Y2),
LPSO (Mg12YZn)
Nd
~3[28]
~1[35]
Mg12Nd, T-phase ((MgZn)92Nd8)
Gd
23.5[29]
4.53[35]
W (Mg3Zn3Gd2), I (Mg3Zn6Gd)
Al
12.7[30]
11.8[35]
Mg17Al12
Zr
3.8[31]
1.0[36]
-
Ca
1.35[32]
0.82[35]
Ca2Mg6Zn3
Cu
0.013[33]
-
MgZnCu
Zn
6.2[34]
2.4[35]
MgZn, MgZn2, Mg7Zn3
Sn
14.5[26]
3.35[26]
MgZnSn
Table 1 Maximum solid solution of common alloying elements in magnesium[26-36]
Alloy
mass fraction / %
Alloy with peak HTS mass fraction / %
Alloy with valley HTS
mass fraction / %
Processing parameter
Tmold / oC
Tpour / oC
Mg-1.5Zn-xY (x = 0.2, 2, 4)[37]
Mg-1.5Zn-0.2Y
Mg-1.5Zn-4Y
250
750
Mg-4.5Zn-xY (x = 0, 0.4, 0.9, 2)[38]
Mg-4.5Zn-0.4Y
Mg-4.5Zn-0.9Y
Mg-4.5Zn-2Y
250
750
Mg-4.5Zn-0.9Y
Mg-4.5Zn,
Mg-4.5Zn-2Y
450
750
Mg-xZn-2xY (x = 1, 1.67, 2.67)[39]
Mg-1.67Zn-3.34Y
Mg-2.67Zn-5.34Y
250
720
Mg-4.5Zn-xY-0.5Zr (x = 0.5, 1, 2, 4, 6)[40]
Mg-4.5Zn-1Y-0.5Zr
Mg-4.5Zn-6Y-0.5Zr
200
720
Mg-1Zn-xY (x = 1, 1.33, 2)[41]
Mg-1Zn-1Y
Mg-1Zn-1.33Y
250
750
Mg-1Zn-xY (x = 1, 2, 3)[42]
Mg-1Zn-1Y
Mg-1Zn-3Y
250
750
Mg-6.5Zn-xY-0.5Zr (x = 1, 2, 4, 6)[43]
Mg-6.5Zn-6Y-0.5Zr
Mg-6.5Zn-2Y-0.5Zr
200
720
Mg-5(Zn + Y)-0.5Zr (Mg-2.5Zn-2.5Y-0.5Zr,
Mg-3Zn-2Y-0.5Zr, Mg-3.75Zn-1.25Y-0.5Zr,
Mg-4.29Zn-0.71Y-0.5Zr)[44]
Mg-3.75Zn-1.25Y-0.5Zr
Mg-2.5Zn-2.5Y-0.5Zr
200
700
Mg-xZn-0.5Y-0.5Zr (x = 1.5, 2.5, 3.5, 4.5)[45]
Mg-1.5Zn-0.5Y-0.5Zr
Mg-4.5Zn-0.5Y-0.5Zr
280
700
Mg-xZn-2Y (x = 0, 0.5, 1.5, 4.5)[46]
Mg-1.5Zn-2Y
Mg-2Y
250
750
Mg-xZn-4Y-0.5Zr (x = 0, 0.5, 1.5, 3)[47]
Mg-1.5Zn-4Y-0.5Zr
Mg-4Y-0.5Zr
200
720
Table 2 Hot tearing susceptibility (HTS) results of Mg-Zn-Y series alloys[37-47]
Alloy
mass fraction / %
Alloy with peak HTS mass fraction / %
Alloy with valley HTS mass fraction / %
Processing parameter
Tmold / oC
Tpour / oC
Mg-6Zn-xCu-0.6Zr (x = 0, 0.5, 1, 2, 3)[66]
Mg-6Zn-0.6Zr
Mg-6Zn-3Cu-0.6Zr
250
750
Mg-7Zn-xCu-0.6Zr (x = 0, 1, 2, 3)[67]
Mg-7Zn-0.6Zr
Mg-7Zn-3Cu-0.6Zr
250
700
Table 3 HTS results of Mg-Zn-Cu series alloys[66,67]
Alloy mass fraction / %
Alloy with peak HTS
mass fraction / %
Alloy with valley HTS
mass fraction / %
Processing parameter
Tmold / oC
Tpour / oC
Mg-xZn-0.5Ca (x = 0, 2, 4, 6)[61]
-
Mg-6Zn-0.5Ca
250
750
Mg-4Zn-0.5Ca
Mg-0.5Ca
450
750
Mg-xZn-2Ca (x = 0, 0.5, 1.5, 4, 6)[70]
Mg-0.5Zn-2Ca,
Mg-1.5Zn-2Ca
Mg-6Zn-2Ca
250
750
Mg-1.5Zn-2Ca
Mg-2Ca,
Mg-6Zn-2Ca
450
750
Mg-1.5Zn-xCa (x =1, 2, 3, 4)[71]
Mg-1.5Zn-1Ca
Mg-1.5Zn-4Ca
200
720
Mg-4Zn-xCa-0.3Zr (x = 0.5, 1,1.5, 2)[72]
Mg-4Zn-0.5Ca-0.3Zr
Mg-4Zn-1.5Ca-0.3Zr
270
700
Table 4 HTS results of Mg-Zn-Ca series alloys[61,70-72]
Alloy mass fraction / %
Secondary phase in alloy
Most effective secondary phase reducing the HTS of the alloy
Table 5 Secondary phases in Mg-Zn-X-Y(-Z) alloy after the addition of alloying elements and the most effective secondary phase reducing the hot tearing susceptibility of alloys[79-81,83,85-87]
Fig.2 Schematic of “T”-shaped hot tearing test system with magnetic field[96]
Fig.3 SEM images of hot tears (a-c) and microstructure morphologies (d, e)[95], and schematics of feeding (f, g)[96] in Mg-4Zn-1.5Ca alloy under natural solidification (a, d, f) and low-frequency alternating magnetic fields (LAMF) (b, c, e, g)
Fig.4 Schematics of the MgZnCu phase agglomeration and spheroidization under LAMF (a-d, f) and SEM images of MgZnCu phase (e, g, h)[94]
Fig.5 Macroscopic photos of hot tearing and results of numerical simulation for Mg-1Zn-xY alloy[42] (a-f) and Mg-xZn-2Y alloys[46] (g-n)
Phase
Condition
Effect
High melting point eutectic phase
Low volume
Increasing the non-uniform nucleation site;
refining the grains;
increasing the content of the liquid film subjected to shrinkage stress/strain;
reducing the HTS of the alloy
High volume
Blocking the feeding channel;
reducing the feeding efficiency of alloy at the end of solidification;
increasing the HTS of the alloy
Low melting point eutectic phase
Thci < TLMPE
Liquid film theory and intergranular bridging theory:
The low melting eutectic phase precipitated before hot tearing initiation acts as “bridges” to fix the grain boundary on both sides. Under the action of surface tension and bridge, the intergranular bonding force improved
Thci ≥ TLMPE
Liquid film theory:
The intergranular binding force is only provided by the surface tension of the liquid film covering the dendrite surface
Table 6 Mechanism of the secondary phase species on hot tearing behavior of magnesium alloys
Fig.6 Solidification temperature range and hot tearing susceptibility of several different alloys (a) Mg-4Zn-1.5Ca alloy under different strengthes of LAMF[95] (b) Mg-5(Zn + Y)-0.5Zr alloys (CSC—crack sus-ceptibility coefficient; A: Mg-2.5Zn-2.5Y-0.5Zr alloy, B: Mg-3Zn-2Y-0.5Zr alloy, C: Mg-3.75Zn-1.25Y-0.5Zr alloy, D: Mg-4.29Zn-0.71Y-0.5Zr alloy)[44] (c) Mg-xZn-4Y-0.5Zr alloy[47]
Fig.7 Effects of Y[43], Al[76], and Ca[72] elements on the solidification temperature interval and HTS of Mg-Zn binary alloy (Tmax, Tmin—the largest and the lowest solidification temperature ranges in the investigated alloys, respectively)
Fig.8 Schematics of alloy solidification process (fs—solid fraction, —solid fraction when dendrite coherency, —temperature when dendrite coherency) (a) the condition of fs is low when dendrite coherency (b) the condition of fs is high when dendrite coherency
1
Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2
Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
3
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
Bassan M, Buonomo B, Cavallari G, et al. Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures [J]. Int. J. Mod. Phys., 2013, 27B: 1350119
5
Mao P L, Wang F, Liu Z, Thermodynamics and Phase Diagrams of Magnesium Alloys [M]. Beijing: China Machine Press, 2015: 24
Eskin D G, Katgerman L, Suyitno, et al. Contraction of aluminum alloys during and after solidification [J]. Metall. Mater. Trans., 2004, 35A: 1325
7
Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundryman, 1981, 74(4): 65
8
Zhou L. Investigations on hot tearing susceptibility and mechanism for Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011
Ramon J, Basu R, Voort G V, et al. A comprehensive study on solidification (hot) cracking in austenitic stainless steel welds from a microstructural approach [J]. Int. J. Pressure Vessels Pip., 2021, 194: 104560
10
Du X D. Solidification behavior and hot tearing mechanism of Mg-Al-Ca series alloys [D]. Shenyang: Shenyang University of Technology, 2023
杜旭东. Mg-Al-Ca系合金凝固行为及热裂机理研究 [D]. 沈阳: 沈阳工业大学, 2023
11
Vero J. The hot-shortness of aluminium alloys [J]. Met. Ind., 1936, 48: 431, 442
12
Singer A R E, Cottrell S A. Properties of the Al-Si Alloys at temperatures in the region of the solidus [J]. J. Inst. Met., 1946, 73: 33
13
Zhu Q. Study on the relationship between mushy zone strength and hot cracking of Mg-Zn based magnesium alloys [D]. Shenyang: Northeastern University, 2016
朱 强. Mg-Zn基镁合金的糊状区强度和热裂的关系研究 [D]. 沈阳: 东北大学, 2016
14
Sigworth G K. Hot tearing of metals [J]. Trans. Am. Foundrymen's Soc., 1996, 104: 1053
15
Wray P J. The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angle [J]. Acta Metall., 1976, 24: 125
16
Saveiko V N. Theory of hot tearing [J]. Russ. Cast. Prod., 1961, 11: 453
17
Campbell J. Castings [M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2003: 253
18
Wang Y S, Wang Q D, Ding W J, et al. Research development of hot tear mechanism for cast alloys [J]. Special Cast. Nonferrous Alloys, 2000, 12(2): 48
Pellini W S. Strain theory of hot tearing [J]. Foundry, 1952, 80: 125
20
Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting [J]. Metall. Trans., 1982, 13B: 259
21
Clyne T W, Davies G J. Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition [A]. Procedings of the Conference on Solidification and Casting of Metals [M]. London: Metals Society, 1979: 274
22
Zhang S B. Investigations on testing methods and hot tearing susceptibility on Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
23
Li X X, Liu S M, Liu Z, et al. Influence of Nd on hot tearing susceptibility and mechanism of Mg-Zn-Y-Zr alloys [J]. J. Mater. Eng. Perform., 2020, 29: 6714
24
Ding H, Fu H Z, Liu Z Y, et al. Compensation of Solidification contraction and hot cracking tendency of alloys [J]. Acta Metall. Sin., 1997, 33: 921
M'hamdi M, Mo A, Martin C L. Two-phase modeling directed toward hot tearing formation in aluminum direct chill casting [J]. Metall. Mater. Trans., 2002, 33A: 2081
26
Liu Z, Zhang K, Zeng X Q. Theoretical Basis and Application of Magnesium-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 26
Zhao Z Y. The application of RE-containing magnesium casting alloys in aviation industry in China [J]. J. Mater. Eng., 1993, (7): 8
赵志远. 铸造稀土镁合金在我国航空工业中的应用 [J]. 材料工程, 1993, (7): 8
28
Liu X, Zhang Z Q, Le Q C, et al. Effects of Nd/Gd value on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys [J]. J. Magnes. Alloy., 2016, 4: 214
29
Luo S F, Yang G Y, Qin H, et al. Substitution effects of Gd with Nd on microstructures and mechanical properties of Mg-10Gd-0.4Zr alloys [J]. Adv. Eng. Mater., 2020, 22: 1901576
30
Luo A A. Recent magnesium alloy development for elevated temperature applications [J]. Int. Mater. Rev., 2004, 49: 13
31
Zhang W Y. Study progress of magnesium alloy and its working technology [J]. Mater. China, 2007, 26(8): 15
张文毓. 镁合金及其加工技术研究进展 [J]. 稀有金属快报, 2007, 26(8): 15
32
Shi L, Li J W, Guan R G, et al. Effects of Mn and Ca elements on the microstructures of magnesium alloys [J]. Non-Ferr. Min. Metall., 2008, 24(1): 23, 55
Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
35
Jiang S Y, Yuan Y, Chen T, et al. Research progress on corrosion resistance of magnesium alloys in aspect of element solid-solution and precipitation [J]. J. Mater. Eng., 2021, 49(12): 40
Wang Z, Huang Y D, Srinivasan A, et al. Influences of Y additions on the hot tearing susceptibility of Mg-1.5wt.%Zn alloys [J]. Met. Sci. Forum, 2013, 765: 306
38
Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
39
Wei Z Q, Wang Y, Liu Z. Effects of Zn and Y on hot-tearing susceptibility of Mg-xZn-2xY alloys [J]. Mater. Sci. Technol., 2018, 34: 2001
40
Feng Y, Mao P L, Liu Z, et al. Effect of yttrium content on hot tearing susceptibility of MgZn4.5Y x Zr0.5 alloys [J]. Chin. J. Nonferrous Met., 2017, 27: 1970
Zhou Z J, Liu Z, Wang Y, et al. Effects of the second phase on hot tearing susceptibility of Mg-Zn-Y alloy [J]. Mater. Res. Express, 2018, 6: 016529
42
Zhou Y, Mao P L, Zhou L, et al. Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg-1Zn-xY alloys [J]. J. Magnes. Alloy., 2020, 8: 1176
43
Wei Z Q, Liu Z, Wang Y, et al. Hot tearing behavior and microstructure mechanism of Mg-6.5Zn-xY-0.5Zr alloys [J]. Mater. Res. Express, 2019, 6: 076570
44
Jia D R, Liu Z, Mao P L, et al. Hot tearing behavior of Mg-5(Zn + Y)-0.5Zr alloys [J]. Mater. Res. Express, 2017, 4: 106511
45
Li X X, Liu Z, Wang Y, et al. Hot tearing defects of as-cast Mg-xZn-0.5Y-0.5Zr alloys [J]. Chin. J. Rare Met., 2020, 44: 697
Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
47
Wang Z, Yao S, Feng Y, et al. Solidification pathways and hot tearing susceptibility of MgZn x Y4Zr0.5 alloys [J]. China Found., 2018, 15: 124
48
Wei Z Q. Effects of solidification behavior of several Mg-Zn-RE (Y, Gd) series alloys on hot tearing mechanism [D]. Shenyang: Shenyang University of Technology, 2021
Liu P, Jiang H T, Cai Z X, et al. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg-Zn alloys [J]. J. Magnes. Alloy., 2016, 4: 188
50
Li R G, Yan Y, Pan H C. Achieving a high-strength binary Mg-15Gd alloy by nano substructure with Gd segregation and nano clusters [J]. Mater. Res. Lett., 2022, 10: 682
51
Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
52
Luo S F, Yang G Y, Zou Z, et al. Hot tearing susceptibility of binary Mg-Gd alloy castings and influence of grain refinement [J]. Adv. Eng. Mater., 2018, 20: 1800139
53
Liu S J. Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd-based magnesium alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
Qin H, Yang G Y, Zheng X W, et al. Effect of Gd content on hot-tearing susceptibility of Mg-6Zn-xGd casting alloys [J]. China Found., 2022, 19: 131
55
Fu X Q, Liu S M, Zhou L, et al. Study on the coupling behavior and micro-mechanism of solidification and hot tearing of Mg-xZn-2xGd Alloys [J]. Int. J. Metalcast., 2021, 15: 1175
56
Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
57
Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium Alloys [J]. Acta Metall. Sin., 2019, 55: 389
Liu Y H, Wang Z H, Li S B, et al. Hot cracking behaviors of Mg-Zn-Er alloys with different Er contents [J]. Metals, 2023, 16: 3546
59
Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 1
60
Zhou Z J. Study on solidification behavior and hot tearing susceptibility of Mg-Zn-Y alloy [D]. Shenyang: Shenyang University of Technology, 2019
周子荐. Mg-Zn-Y合金凝固行为及热裂敏感性研究 [D]. 沈阳: 沈阳工业大学, 2019
61
Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
62
Chen X H, Liu L Z, Pan F S, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys [J]. Mater. Sci. Eng., 2015, B197: 67
63
Zhang W P. Effect of Cu element on microstructure and thermalphysical properties of Mg-Zn alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2018
Zhu H M, Luo C P, Liu J W, et al. Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60 [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 605
65
Hu Y B, Yao Q S, Zhu C, et al. Effects of mass ratio of zinc/copper on microstructure and properties of extruded Mg-Zn-Cu-Ce alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1668
Wang Z, Li Y Z, Wang F, et al. Effect of Cu additions on microstructure, mechanical properties and hot-tearing susceptibility of Mg-6Zn-0.6Zr alloys [J]. J. Mater. Eng. Perform., 2016, 25: 5530
67
Wang Z, Zhou Y, Li Y Z, et al. Hot tearing behaviors and in-situ thermal analysis of Mg-7Zn-xCu-0.6Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1504
68
Zhang B P, Wang Y, Geng L. Research on Mg-Zn-Ca alloy as degradable biomaterial [A]. Biomaterials—Physics and Chemistry [M], 2011: 183
69
Cao L F, Du W B, Su X K, et al. Role of calcium alloying in magnesium alloys [J]. Found. Technol., 2006, 27: 182
Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Metalcast., 2021, 15: 1298
73
Yin P, Li N F, Lei T, et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys [J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
74
Yang M B, Pan F S, Li Z S, et al. Alloying elements and their effects in Mg-Al based elevated temperature magnesium alloy [J]. Mater. Rep., 2005, (04): 46
Yang M B, Pan F S, Yang A T, et al. Research status of Mg-Zn-Al(ZA) based elevated temperature magnesium alloy [J]. Hot Work. Technol., 2007, 36(8): 73
Vinodh G, Jafari Hodooshan H R, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
77
Li T X, Wang F, Du X D, et al. Effect of Al content on hot tearing susceptibility of Mg-5Zn-0.6Mn-xAl-0.6Zr alloys [J/OL]. Int. J. Metalcast., 2022. (2023-06-30).
78
Li B C, Zhang J, Ye F W, et al. An approach to studying the hot tearing mechanism of alloying elements in ternary Mg-Zn-Al alloys [J]. J. Mater. Process. Technol., 2023, 317: 117980
79
Li X X, Liu Z, Wang Y, et al. Investigation on hot tearing behavior and its mechanism of Mg-4.5Zn-xY-yNd (x + y = 6, x = 0, 1, 3, 6) alloys [J]. Mater. Res. Express, 2019, 6: 106535
80
Wei Z Q, Liu S M, Liu Z, et al. Effects of Zn content on hot tearing susceptibility of Mg-Zn-Gd-Y-Zr alloys [J]. Int. J. Metalcast., 2022, 16: 1902
81
Zhu G N, Wang Z, Qiu W Y, et al. Effect of yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Metalcast., 2020, 14: 179
82
Zhou J, Nodooshan H R J, Li D J, et al. Microstructure and tensile properties of the Mg-6Zn-4Al-xSn die cast magnesium alloy [J]. Metals, 2019, 9: 113
83
Leng F, Wang F, Du X D, et al. Study on the hot tearing susceptibility of Mg-4Zn-xSn-1Ca alloys [J]. Int. J. Metalcast., 2022, 17: 342
84
Leng F. Study on hot tearing behavior of Mg-Zn-Sn alloys under magnetic field [D]. Shenyang: Shenyang University of Technology, 2021
冷 枫. 磁场作用下Mg-Zn-Sn合金热裂行为研究 [D]. 沈阳: 沈阳工业大学, 2021
85
Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La alloys for the improvement of casting properties and creep resistance [J]. Mater. Sci. Forum, 2005, 488-489: 805
86
Zhang G J, Wang Y, Liu Z, et al. Influence of Al addition on solidification path and hot tearing susceptibility of Mg-2Zn-(3 + 0.5x)Y-xAl alloys [J]. J. Magnes. Alloy., 2019, 7: 272
87
Zhang G J, Liu Z, Wang Y, et al. An investigation on solidification path and hot tearing tendency of Mg-2Zn-3Y-xAl alloys [J]. Mater. Sci. Eng. Technol., 2019, 50: 1471
88
Zhang Z, Couture A, Luo A L. An investigation of the properties of Mg-Zn-Al alloys [J]. Scr. Mater., 1998, 39: 45
89
Birru A K, Benny Karunakar D. Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1783
90
Dong J, Zhao Z H, Cui J Z, et al. Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy [J]. Metall. Mater. Trans., 2004, 35A: 2487
91
Du X D, Wang F, Wang Z, et al. Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1259
92
Duan W C, Yin S Q, Liu W H, et al. Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field [J]. J. Magnes. Alloy., 2021, 9: 166
93
Zhang Z W, Le Q C, Bao L, et al. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of semi-continuous casting ZK60 magnesium alloy billets [J]. China Found., 2013, 10: 351
94
Zhou Y, Mao P L, Wang Z, et al. Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy [J]. J. Mater. Process. Technol., 2020, 282: 116679
95
Bai S W, Wang F, Du X D, et al. Effect of alternating magnetic fields on hot tearing susceptibility of Mg-4Zn-1.5Ca alloy [J]. Mater. Sci. Technol., 2023, 39: 50
96
Du X D, Wang F, Bai S W, et al. Effect of low-frequency alternating magnetic field strength on hot tearing susceptibility of AXJ530 alloy [J]. Int. J. Metalcast., 2022, 17: 2017
97
Feurer U. Influence of alloy composition and solidification conditions on dendrite arm spacing, feeding, and hot tear properties of aluminum alloys [A]. Proceedings of the International Symposium Engineering Alloys [C]. New York, United States, 1977: 131
98
Luo L, Luo L S, Su Y Q, et al. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79: 1
doi: 10.1016/j.jmst.2020.11.035
99
Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
100
Zhu J Z, Guo J, Samonds M T. Numerical modeling of hot tearing formation in metal casting and its validations [J]. Int. J. Numer. Methods Eng., 2011, 87(1-5): 289
101
Du X D, Wang F, Wang Z, et al. Effect of Ca/Al ratio on hot tearing susceptibility of Mg-Al-Ca alloy [J]. J. Alloy. Compd., 2022, 911: 165113
102
Zhou Y, Mao P L, Wang Z, et al. Experimental investigation and simulation assessment on fluidity and hot tearing of Mg-Zn-Cu system alloys [J]. J. Mater. Process. Technol., 2021, 297: 117259
103
Zhou Y, Mao P L, Wang Z, et al. Effects of copper content and mold temperature on the hot tearing susceptibility of Mg-7Zn-xCu-0.6Zr alloys [J]. Metall. Mater. Trans., 2018, 49B: 3444
104
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
105
Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
106
Wang Z, Huang Y D, Srinivasan A, et al. Experimental and numerical analysis of hot tearing susceptibility for Mg-Y alloys [J]. J. Mater. Sci., 2014, 49: 353
107
Wang F, Dong H K, Wang Z, et al. Hot cracking behavior of Mg-5Al-xCa Alloys [J]. Acta Metall. Sin., 2017, 53: 211
Shi K. Microstructure evolution of semi solid slurry of AZ91D magnesium alloy under ultrasonic vibration [D]. Nanchang: Nanchang University, 2021
史 坤. 超声振动下AZ91D镁合金半固态浆料微观组织演变 [D]. 南昌: 南昌大学, 2021
109
Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29: 1953
Li Y, Li H X, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys [J]. Prog. Mater. Sci., 2021, 117: 100741
111
Lee D C G. The hot tearing tendencies of aluminium casting alloys [J]. J. Inst. Met., 1946, 72: 644
112
Chen D X, Wang J S, Wang Y, et al. A review on hot tearing models in direct chill casting of aluminum alloys [J]. Aeronaut. Manuf. Technol., 2020, 63(22): 24
Williams J A, Singer A R E. Deformation, strength, and fracture above the solidus temperature [J]. J. Inst. Met., 1968, 96(1): 5
114
Novikov I I, Grushko O E. Hot cracking susceptibility of Al-Cu-Li and Al-Cu-Li-Mn alloys [J]. Mater. Sci. Technol., 1995, 11: 926
115
Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
116
Liu S M, Wei Z Q, Liu Z, et al. Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg-Zn x -Y2-Zr0.06 alloys with different initial mold temperatures [J]. J. Alloy. Compd., 2022, 904: 163963
117
Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
118
Easton M, Grandfield J, StJohn D, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
119
Du X D, Wang F, Wang Z, et al. Effect of addition of minor amounts of Sb and Gd on hot tearing susceptibility of Mg-5Al-3Ca alloy [J]. J. Magnes. Alloy., 2023, 11: 694
120
Dong H K, Wang F, Wang Z, et al. Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy [J]. Mater. Res. Express, 2018, 5: 036513