In the light of the property requirements to design microstructures will become an important develop direction of metal materials. Here, a new concept of microstructure tailoring is proposed. The main features of microstructure tailoring include designing mesoscale microstructure, establishing quantitative relation between microstructures and properties, accurately inverse-designing and fabricating microstructures to satisfy the property requirements. It means screening, multi-scale calculation, and quantification of the essential microstructural factors should be performed first. Second, the microstructures are purposefully fabricated after adjusting the thermodynamics and kinetics of phase transformation. Third, the microstructures are assessed and tailored through iterative optimization. Microstructure tailoring must be preceded by purification and homogenization of metals. Only when the purity problem of materials is solved first, the influence of inclusions and impurity elements can be eliminated. Only by eliminating the macro-segregation can the material achieve homogeneity. And then the intrinsic properties of the material be fully reflected. As an example of microstructure tailoring, this study investigates the expected fatigue-life requirements of M50 (G80Cr4Mo4V) steels used for bearings in aircraft engines. By controlling the macro-segregation and purification, it is found that the fatigue-life of M50 steel mainly depends on primary carbides. And then the size, type, and morphology of the primary carbides are quantitatively tailored to fulfill the fatigue-life requirement. With technological developments in the metallurgy industry, microstructure tailoring will become a mainstay of the development of metals. And, applying data science and modeling along with microstructure tailoring technology, the alloy design will be gradually optimized in the future. The expensive metal addition will be reduced gradually, so as to save resources and develop green materials.
Fig.1 Schematical technology route of tailoring microstructures of metals
Fig.2 Inclusions in the M50 steel manufactured by vacuum induction melting (VIM) + vacuum arc remelting (VAR) and low-oxygen RE treatment
Fig.3 Typical morphology of primary carbides in M50 steel
Fig.4 Morphology and EDS element mappings of crack initiation region in tension-compression fatigue specimens of M50 steel (a-c) (FGA—fine grain area)
Fig.5 SEM image of the tailored microstructure of M50 steel (The size of primary carbide ≤ 20 μm)
Fig.6 Weibull distribution curves of ± 900 MPa tension-compression fatigue life of M50 steel prepared by different processes (S1 and S2 curves are the fatigue life of M50 steel manufactured by microstructure tailoring technology and normal technology, respectively)
1
Ashby M, Shercliff H, Cebon D, et al. Materials: Engineering, Science, Processing and Design [M]. Amsterdam: Elsevier, 2007
2
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
4
Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9
pmid: 36075967
6
Flemings M C. MIT studies on dendritic solidification from 1950 to 1970 [J]. J. Cryst. Growth., 2020, 530: 125246
doi: 10.1016/j.jcrysgro.2019.125246
7
Ludwig A, Wu M H, Kharicha A. On macrosegregation [J]. Metall. Mater. Trans., 2015, 46A: 4854
8
Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
9
Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
doi: 10.1038/ncomms6572
pmid: 25422943
10
Li X Y, Lu K. Playing with defects in metals [J]. Nat. Mater., 2017, 16: 700
doi: 10.1038/nmat4929
pmid: 28653694
11
Yang L, Li X Y, Lu K. Making materials plain: concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905
pmid: 31123122
13
Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled steel strip: Part I - Description of models [J]. Steel Res. Int., 2004, 75: 462
doi: 10.1002/srin.2004.75.issue-7
14
Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled strip steel: Part II - Verification and application [J]. Steel Res. Int., 2004, 75: 468
doi: 10.1002/srin.2004.75.issue-7
15
Wang C L. Phase Diagrams and Its Application [M]. 2nd Ed., Beijing: Higher Education Press, 2014: 16
王崇琳. 相图理论及其应用 [M]. 第2版. 北京: 高等教育出版社, 2014: 16
16
Reid A, Marshall M, Martinez I, et al. Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction [J]. Mater. Des., 2020, 190: 108571
doi: 10.1016/j.matdes.2020.108571
17
National Science and Technology Council. Materials genome initiative for global competitiveness [R]. Washington: Executive Office of the President, National Science and Technology Council, 2011: 50
18
Xiao X Z, Chen L R, Yu L, et al. Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory [J]. Int. J. Plast., 2019, 116: 216
doi: 10.1016/j.ijplas.2019.01.005
19
Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
doi: 10.1016/j.ijplas.2019.07.016
20
Kapp M W, Renk O, Eckert J, et al. The importance of lamellar architecture to obtain ductility in heavily cold-worked pearlitic steels revealed by microbending experiments [J]. Acta Mater., 2022, 232: 117935
doi: 10.1016/j.actamat.2022.117935
21
Zheng X D, Han W, Yang K, et al. Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy [J]. Sci. Adv., 2022, 8: eabo0773
doi: 10.1126/sciadv.abo0773
22
Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Mater., 2014, 76: 1
doi: 10.1016/j.actamat.2014.05.015
23
Guo Y, Abdolvand H, Britton T B, et al. Growth of { 11 2 ¯ 2 } twins in titanium: A combined experimental and modelling investigation of the local state of deformation [J]. Acta Mater., 2017, 126: 221
doi: 10.1016/j.actamat.2016.12.066
24
Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
25
Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
26
Fu B, Yang W Y, Wang Y D, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction [J]. Acta Mater., 2014, 76: 342
doi: 10.1016/j.actamat.2014.05.029
27
Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
doi: 10.1016/j.actamat.2007.02.029
28
Zhang X, Wang P, Li D Z, et al. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72: 180
doi: 10.1016/j.jmst.2020.09.023
29
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
30
Hidalgo J, Vittorietti M, Farahani H, et al. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel [J]. Acta Mater., 2020, 200: 74
doi: 10.1016/j.actamat.2020.08.072
31
Bong H J, Hu X, Sun X, et al. Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment [J]. Int. J. Plast., 2019, 113: 35
doi: 10.1016/j.ijplas.2018.09.005
32
Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
33
Hestroffer J M, Latypov M I, Stinville J C, et al. Development of grain-scale slip activity and lattice rotation fields in Inconel 718 [J]. Acta Mater., 2022, 226: 117627
doi: 10.1016/j.actamat.2022.117627
34
National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington: The National Academies Press, 2008: 16
35
Holdren J P. National science and technology council, committee on technology, subcommittee on the materials genome initiative, materials genome initiative strategic plan [J]. 2014.
36
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
37
Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
doi: 10.1016/j.actamat.2022.118103
38
Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
39
Paramatmuni C, Guo Y, Withers P J, et al. A three-dimensional mechanistic study of the drivers of classical twin nucleation and variant selection in Mg alloys: A mesoscale modelling and experimental study [J]. Int. J. Plast., 2021, 143: 103027
doi: 10.1016/j.ijplas.2021.103027
40
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
41
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
42
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
43
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
44
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
45
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
doi: 10.1038/s41586-022-04914-8
46
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
47
Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
Du N Y, Liu H H, Cao Y F, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel [J]. Mater. Charact., 2022, 186: 111822
doi: 10.1016/j.matchar.2022.111822