Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 473-484    DOI: 10.11900/0412.1961.2022.00239
Research paper Current Issue | Archive | Adv Search |
Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling
TIAN Teng1, ZHA Min1,2,3(), YIN Haoliang1, HUA Zhenming1, JIA Hailong1,3, WANG Huiyuan1,2,3()
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
2 State Key Laboratory of Super Hard Materials, Jilin University, Changchun 130012, China
3 International Center of Future Science, Jilin University, Changchun 130012, China
Cite this article: 

TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling. Acta Metall Sin, 2024, 60(4): 473-484.

Download:  HTML  PDF(6737KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Mg series alloys are highly desirable for structural applications, owing to their high specific strength, good formability, and excellent corrosion resistance. However, high-strength Al-Mg alloys prepared via severe plastic deformation generally exhibit poor thermal stability, which is caused by the high-density grain boundaries (GBs). Achieving simultaneous high strength and thermal stability in binary Al-Mg alloys remains a challenge. In this study, Al-9Mg alloys with a combination of high strength (~597 MPa), decent elongation (~7.7%), and enhanced thermal stability were developed via cryogenic high-reduction hard-plate rolling (CHR-HPR). The effects of solute Mg content on the microstructure evolution and mechanical properties of CHR-HPR Al-Mg alloys were systematically investigated using EBSD, TEM, microhardness measurements, and tensile tests. The high yield strength is derived from high-density dislocations and low-angle GBs promoted via the high content of solute Mg atoms and low deformation temperature. In addition to the positive roles of Mg atoms and low deformation temperature on work-hardening ability, the simultaneous improvement in the ultimate tensile strength and ductility of CHR-HPR Al-Mg alloys with increasing solute Mg content is partially attributed to the enhanced work hardening induced via the dynamic strain aging. Furthermore, the recrystallization temperature of the CHR-HPR Al-Mg alloys gradually increased with increasing solute Mg content, and the recrystallization temperature of CHR-HPR Al-9Mg could reach 400oC. The enhanced thermal stability of CHR-HPR Al-9Mg alloy is due to the high content Mg solute atoms, which strongly retard recovery and recrystallization by dragging dislocations and pinning GBs.

Key words:  Al-Mg alloy      cryogenic hard-plate rolling      work hardening      mechanical property      microstructure      recrystallization     
Received:  12 May 2022     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51922048);National Natural Science Foundation of China(51625402);National Natural Science Foundation of China(51790483)
Corresponding Authors:  ZHA Min, professor, Tel:(0431)85094699, E-mail: minzha@jlu.edu.cn;
WANG Huiyuan, professor, Tel:(0431)85095415, E-mail: wanghuiyuan@jlu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00239     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/473

AlloyMgFeMnSiAl
Al-1Mg1.050.050.0020.03Bal.
Al-5Mg5.180.050.0040.03Bal.
Al-9Mg9.090.050.0020.04Bal.
Table 1  Chemical compositions of the investigated Al-Mg alloys
Fig.1  XRD spectra of the as-extruded and cryogenic high-reduction hard-plate rolling (CHR-HPR) Al-Mg alloys (Dotted vertical lines represent the theoretical diffraction peaks of pure Al)
MaterialState

a

nm

Δa

nm

ΔMg

mass fraction / %

Pure Al[8]0.40413
Al-1MgAs-extruded0.40567 ± 0.000060.000250.48
CHR-HPR0.40542 ± 0.00001
Al-5MgAs-extruded0.40776 ± 0.000070.000350.68
CHR-HPR0.40741 ± 0.00001
Al-9MgAs-extruded0.40988 ± 0.000050.000200.38
CHR-HPR0.40968 ± 0.00001
Table 2  Lattice parameters and the losses of Mg concentration in solid solution determined from XRD spectra of the pure Al[8], as-extruded, and CHR-HPR Al-Mg alloys
Fig.2  EBSD analyses of CHR-HPR Al-1Mg (a, d), CHR-HPR Al-5Mg (b, e), and CHR-HPR Al-9Mg (c, f) alloys (High-angle grain boundaries (HAGBs) are defined by misorientation angle (θ) > 15°, and low-angle grain boundaries (LAGBs) are defined by 2° < θ < 15°, respectively. TD—transverse direction, RD—rolling direction) (a-c) inverse pole figure maps (d-f) kernel average misorientation (KAM) images
Fig.3  TEM images of the CHR-HPR Al-1Mg (a-c), CHR-HPR Al-5Mg (d-f), and CHR-HPR Al-9Mg (g-i) alloys (Insets in Figs.3c, f, and i are the corresponding selected area electron diffraction patterns of the matrix)
Fig.4  Tensile properties of CHR-HPR Al-Mg alloys
(a) engineering stress-strain curves
(b) true stress-strain curves (Inset in Fig.4b shows the locally magnified section)
(c) work hardening rate as a function of true strain
Fig.5  Microhardness evolution of CHR-HPR Al-Mg alloys annealed at different temperatures for 30 min
Fig.6  Engineering stress-strain curves of CHR-HPR Al-Mg alloys annealed at 275oC (a), 300oC (b), 350oC (c), and 400oC (d) for 30 min
Fig.7  EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 275oC for 30 min (ND—normal direction) (a-c) inverse pole figure maps (d-f) different types of grains
Fig.8  EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 300oC for 30 min (a-c) inverse pole figure maps (d-f) different types of grains
Fig.9  EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 350oC for 30 min (a-c) inverse pole figure maps (Insets in Figs.9a and b are the corresponding grain size distribution charts. dave— average grain size) (d-f) different types of grains
Fig.10  EBSD analyses of CHR-HPR Al-1Mg (a, d), Al-5Mg (b, e), and Al-9Mg (c, f) alloys annealed at 400oC for 30 min (a-c) inverse pole figure maps (Insets in Figs.10a-c are the corresponding grain size distribution charts) (d-f) different types of grains
Fig.11  Microstructure evolution models of CHR-HPR Al-1Mg (ai-ei), Al-5Mg (aii-eii), and Al-9Mg (aiii-eiii) alloys before (ai-aiii) and after annealing at 275oC (bi-biii), 300oC (ci-ciii), 350oC (di-diii), and 400oC (ei-eiii) (Red lines represent deformation bands and green hexagons represent recrystallized grains, while black and gray curve lines represent HAGBs and LAGBs, respectively)
1 Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy[J]. Int. J. Plast., 2021, 146: 103108
doi: 10.1016/j.ijplas.2021.103108
2 Tang Y P, Goto W, Hirosawa S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition[J]. Acta Mater., 2017, 131: 57
doi: 10.1016/j.actamat.2017.04.002
3 Yuan T, Zhao X H, Jiang X Q, et al. Mechanism of grain refinement of pulse current assisted plasma arc welded Al-Mg alloy[J]. Acta Metall. Sin., 2024, 60: 323
doi: 10.11900/0412.1961.2022.00036
袁 涛, 赵晓虎, 蒋晓青 等. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60: 323
4 Zha M, Zhang H M, Meng X T, et al. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation[J]. J. Mater. Sci. Technol., 2021, 89: 141
doi: 10.1016/j.jmst.2021.01.086
5 Jang D H, Park Y B, Kim W J. Significant strengthening in superlight Al-Mg alloy with an exceptionally large amount of Mg (13 wt%) after cold rolling[J]. Mater. Sci. Eng., 2019, A744: 36
6 Morishige T, Hirata T, Uesugi T, et al. Effect of Mg content on the minimum grain size of Al-Mg alloys obtained by friction stir processing[J]. Scr. Mater., 2011, 64: 355
doi: 10.1016/j.scriptamat.2010.10.033
7 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
8 Zha M, Li Y J, Mathiesen R H, et al. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Mater., 2015, 84: 42
doi: 10.1016/j.actamat.2014.10.025
9 Liu Y, Liu M P, Chen X F, et al. Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion[J]. Scr. Mater., 2019, 159: 137
10 Ruppert M, Schunk C, Hausmann D, et al. Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding[J]. Acta Mater., 2016, 103: 643
doi: 10.1016/j.actamat.2015.11.009
11 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd[J]. Acta Mater., 2020, 183: 398
doi: 10.1016/j.actamat.2019.11.034
12 Konkova T, Mironov S, Korznikov A, et al. Microstructural response of pure copper to cryogenic rolling[J]. Acta Mater., 2010, 58: 5262
doi: 10.1016/j.actamat.2010.05.056
13 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
14 Zha M, Li Y J, Mathiesen R H, et al. High ductility bulk nanostructured Al-Mg binary alloy processed by equal channel angular pressing and inter-pass annealing[J]. Scr. Mater., 2015, 105: 22
doi: 10.1016/j.scriptamat.2015.04.018
15 Krymskiy S, Sitdikov O, Avtokratova E, et al. 2024 aluminum alloy ultrahigh-strength sheet due to two-level nanostructuring under cryorolling and heat treatment[J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 14
doi: 10.1016/S1003-6326(19)65176-9
16 Kumar V, Kumar D. Investigation of tensile behaviour of cryorolled and room temperature rolled 6082 Al alloy[J]. Mater. Sci. Eng., 2017, A691: 211
17 Zhang H M, Zha M, Jia H L, et al. Influences of the Al3Sc particle content on the evolution of bimodal grain structure and mechanical properties of Al-Mg-Sc alloys processed by hard-plate rolling[J]. Mater. Sci. Eng., 2021, A802: 140451
18 Zha M, Meng X T, Zhang H M, et al. High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route[J]. J. Alloys Compd., 2017, 728: 872
doi: 10.1016/j.jallcom.2017.09.017
19 Zha M, Liang J W, Xing H, et al. Spheroiding and refining of coarse CaMgSn phase in Mg-Al-Sn-Ca alloys for simultaneously improved strength and ductility via sub-rapid solidification and controlled rolling[J]. Mater. Sci. Eng., 2022, A834: 142598
20 Li Y K, Zha M, Jia H L, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles[J]. J. Magnes. Alloy., 2021, 9: 1556
doi: 10.1016/j.jma.2021.01.008
21 Li Y K, Zha M, Rong J, et al. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 88: 215
doi: 10.1016/j.jmst.2021.01.050
22 Jin Z Z, Zha M, Jia H L, et al. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 81: 219
doi: 10.1016/j.jmst.2020.11.069
23 Zhang H, Zha M, Tian T, et al. Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg-Al-Zn alloys processed by hard-plate rolling (HPR)[J]. Mater. Sci. Eng., 2021, A808: 140920
24 Zhou F, Liao X Z, Zhu Y T, et al. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling[J]. Acta Mater., 2003, 51: 2777
doi: 10.1016/S1359-6454(03)00083-1
25 Alyani A, Kazeminezhad M. Annealing behavior of aluminum after low-temperature severe plastic deformation[J]. Mater. Sci. Eng., 2021, A824: 141810
26 Dhal A, Panigrahi S K, Shunmugam M S. Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys[J]. J. Alloys Compd., 2017, 726: 1205
doi: 10.1016/j.jallcom.2017.08.062
27 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metall. Sin., 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57: 129
doi: 10.11900/0412.1961.2020.00347
28 Hasegawa H, Komura S, Utsunomiya A, et al. Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions[J]. Mater. Sci. Eng., 1999, A265: 188
29 Hayes J S, Keyte R, Prangnell P B. Effect of grain size on tensile behaviour of a submicron grained Al-3wt%-Mg alloy produced by severe deformation[J]. Mater. Sci. Technol., 2000, 16: 1259
doi: 10.1179/026708300101507479
30 Zha M, Meng X T, Yu Z Y, et al. Enhancing thermal stability of binary Al-Mg alloys by tailoring grain orientations using a high solute Mg content[J]. Metall. Mater. Trans., 2019, 50A: 5264
31 Jin S B, Tao N R, Marthinsen K, et al. Deformation of an Al-7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation[J]. Mater. Sci. Eng., 2015, A628: 160
32 Han B S, Wei L J, Xu Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment[J]. Acta Metall. Sin., 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
韩宝帅, 魏立军, 徐严谨 等. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
33 Kreyca J, Kozeschnik E. State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions[J]. Int. J. Plast., 2018, 103: 67
doi: 10.1016/j.ijplas.2018.01.001
34 Fu S H, Cheng T, Zhang Q C, et al. Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin-Le Chatelier effect[J]. Acta Mater., 2012, 60: 6650
doi: 10.1016/j.actamat.2012.08.035
35 Jobba M, Mishra R K, Niewczas M. Flow stress and work-hardening behaviour of Al-Mg binary alloys[J]. Int. J. Plast., 2015, 65: 43
doi: 10.1016/j.ijplas.2014.08.006
36 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
37 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy[J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
38 Hansen N. Hall-Petch relation and boundary strengthening[J]. Scr. Mater., 2004, 51: 801
doi: 10.1016/j.scriptamat.2004.06.002
39 Valiev R Z, Enikeev N A, Murashkin M Y, et al. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation[J]. Scr. Mater., 2010, 63: 949
doi: 10.1016/j.scriptamat.2010.07.014
40 Liu G, Zhang P, Yang C, et al. Aluminum alloys: Solute atom clusters and their strengthening[J]. Acta Metall. Sin., 2021, 57: 1484
doi: 10.11900/0412.1961.2021.00301
刘 刚, 张 鹏, 杨 冲 等. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57: 1484
41 Chen Y J, Roven H J, Gireesh S S, et al. Quantitative study of grain refinement in Al-Mg alloy processed by equal channel angular pressing at cryogenic temperature[J]. Mater. Lett., 2011, 65: 3472
doi: 10.1016/j.matlet.2011.07.067
[1] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[2] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[3] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[4] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[5] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[6] CHEN Shenghu, WANG Qiyu, JIANG Haichang, RONG Lijian. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. 金属学报, 2024, 60(3): 367-376.
[7] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[8] YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing, REN Xuelei, LI Boyang. Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy[J]. 金属学报, 2024, 60(3): 323-332.
[9] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[10] NI Mingjie, LIU Renci, ZHOU Haohao, YANG Chao, GE Shuyu, LIU Dong, SHI Fengling, CUI Yuyou, YANG Rui. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. 金属学报, 2024, 60(2): 261-272.
[11] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[12] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[13] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[14] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
[15] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
No Suggested Reading articles found!