|
|
Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites |
FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang( ) |
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites. Acta Metall Sin, 2022, 58(11): 1416-1426.
|
Abstract The mechanical properties of metal matrix composites depend on not only the content of the reinforcements but also the composite architecture (shape, size, and spatial distribution). This paper focuses on the heterogeneous architecture design of metal matrix composites, including the heterogeneous architecture design of reinforcements and the intrinsic heterogeneous design of the matrix. In addition, it summarizes the development process of scale refinement, size quantification, and structural parameter diversification of metal matrix composite architecture design. The future development direction of architectural composite and the strengthening and toughing design of metal matrix composites based on the energy dissipation theory is also proposed.
|
Received: 27 July 2022
|
|
Fund: National Natural Science Foundation of China(52192592);National Natural Science Foundation of China(52192595);National Natural Science Foundation of China(52171143);National Natural Science Foundation of China(51871149) |
About author: LI Zhiqiang, professor, Tel: (021)34202749, E-mail: lizhq@sjtu.edu.cn
|
1 |
Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Mater. China, 2010, 29(4): 1
|
|
张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
|
2 |
Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strategic Study CAE, 2020, 22(2): 79
|
|
武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79
|
3 |
Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites—A review [J]. J. Mater. Sci., 1991, 26: 1137
doi: 10.1007/BF00544448
|
4 |
Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
|
5 |
Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
doi: 10.1016/j.compscitech.2005.05.027
|
6 |
Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
|
7 |
Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites [J]. Adv. Mater., 2021, 33: 2000688
doi: 10.1002/adma.202000688
|
8 |
Kumar P L, Lombardi A, Byczynski G, et al. Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review [J]. Prog. Mater. Sci., 2022, 128: 100948
doi: 10.1016/j.pmatsci.2022.100948
|
9 |
Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metall. Sin., 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
|
|
武高辉, 乔 菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展 [J]. 金属学报, 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
|
10 |
Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—A review [J]. Int. Mater. Rev., 2010, 55: 41
doi: 10.1179/095066009X12572530170543
|
11 |
Withers P J, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography [J]. Annu. Rev. Mater. Res., 2012, 42: 81
doi: 10.1146/annurev-matsci-070511-155111
|
12 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
13 |
Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon, 2011, 49: 533
doi: 10.1016/j.carbon.2010.09.054
|
14 |
Barai P, Weng G J. A theory of plasticity for carbon nanotube reinforced composites [J]. Int. J. Plast., 2011, 27: 539
doi: 10.1016/j.ijplas.2010.08.006
|
15 |
Kwon H, Park D H, Silvain J F, et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials [J]. Compos. Sci. Technol., 2010, 70: 546
doi: 10.1016/j.compscitech.2009.11.025
|
16 |
Chen B, Jia L, Li S F, et al. In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites [J]. Adv. Eng. Mater., 2014, 16: 972
doi: 10.1002/adem.201400232
|
17 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
18 |
Meyers M A, McKittrick J, Chen P Y. Structural biological materials: Critical mechanics-materials connections [J]. Science, 2013, 339: 773
doi: 10.1126/science.1220854
pmid: 23413348
|
19 |
Barthelat F, Yin Z, Buehler M J. Structure and mechanics of interfaces in biological materials [J]. Nat. Rev. Mater., 2016, 1: 16007
doi: 10.1038/natrevmats.2016.7
|
20 |
Libonati F, Buehler M J. Advanced structural materials by bioinspiration [J]. Adv. Eng. Mater., 2017, 19: 1600787
doi: 10.1002/adem.201600787
|
21 |
Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
|
22 |
Grishaber R B, Sergueeva A V, Mishra R S, et al. Laminated metal composites—High temperature deformation behavior [J]. Mater. Sci. Eng., 2005, A403: 17
|
23 |
Liu B X, Huang L J, Geng L, et al. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding [J]. J. Alloys Compd., 2014, 602: 187
doi: 10.1016/j.jallcom.2014.02.140
|
24 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
|
25 |
Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites, 2017, 108B: 377
|
26 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
27 |
Qin S Y, Zhang G D. Preparation of high fracture performance SiCp-6061A1/6061A1 composite [J]. Mater. Sci. Eng., 2000, A279: 231
|
28 |
Liu C, Qin S Y, Zhang G D, et al. Micromechanical properties of high fracture performance SiCp-6061Al/6061Al composite [J]. Mater. Sci. Eng., 2002, A332: 203
|
29 |
Chen L, Hou Z C, Liu Y F, et al. High strength and high ductility copper matrix composite reinforced by graded distribution of carbon nanotubes [J]. Composites, 2020, 138A: 106063
|
30 |
Guo C, Guo S W, Cheng Y, et al. Bending mechanical properties and its evaluation of aluminium alloy matrix gradient composites reinforced with SiC particles [J]. Acta Mater. Compos. Sin., 2002, 19(6): 57
|
|
郭 成, 郭生武, 程 羽 等. SiC颗粒增强铝合金基梯度复合材料弯曲力学性能及其评价 [J]. 复合材料学报, 2002, 19(6): 57
|
31 |
Wang W R, Xie H F, Xie L, et al. Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field [J]. Mater. Lett., 2018, 233: 4
doi: 10.1016/j.matlet.2018.08.059
|
32 |
Moon R J, Tilbrook M, Hoffman M, et al. Al-Al2O3 composites with interpenetrating network structures: Composite modulus estimation [J]. J. Am. Ceram. Soc., 2005, 88: 666
doi: 10.1111/j.1551-2916.2005.00115.x
|
33 |
Dong Z Q, Zhang L, Chen W X. Evaluation of Cu-Cr3C2 composite with interpenetrating network [J]. Mater. Sci. Eng., 2012, A552: 24
|
34 |
Kaveendran B, Wang G S, Huang L J, et al. In situ (Al3Zr + Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing [J]. J. Alloys Compd., 2013, 581: 16
doi: 10.1016/j.jallcom.2013.06.143
|
35 |
Jiao Y, Huang L J, Duan T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3 + TiBw)/Ti6Al4V composites [J]. Sci. Rep., 2016, 6: 32991
doi: 10.1038/srep32991
pmid: 27622992
|
36 |
De Castro V, Leguey T, Muñoz A, et al. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting [J]. Mater. Sci. Eng., 2006, A422: 189
|
37 |
Yang Z F, Lu W J, Qin J N, et al. Microstructural characterization of Nd2O3 in in situ synthesized multiple-reinforced (TiB + TiC + Nd2O3)/Ti composites [J]. J. Alloys Compd., 2006, 425: 379
doi: 10.1016/j.jallcom.2006.01.045
|
38 |
Xiao L, Lu W J, Qin J N, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite [J]. Compos. Sci. Technol., 2009, 69: 1925
doi: 10.1016/j.compscitech.2009.04.009
|
39 |
Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network [J]. Nanoscale, 2017, 9: 11929
doi: 10.1039/c6nr07335b
pmid: 28786440
|
40 |
Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
doi: 10.1016/j.matdes.2013.05.067
|
41 |
Chand S, Chandrasekhar P, Sarangi R K, et al. Influence of B4C particles on processing and strengthening mechanisms in aluminum metal matrix composites—A review [J]. Mater. Today: Proc., 2019, 18: 5356
|
42 |
Khorshid M T, Jahromi S A J, Moshksar M M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion [J]. Mater. Des., 2010, 31: 3880
doi: 10.1016/j.matdes.2010.02.047
|
43 |
Kai X Z, Li Z Q, Fan G L, et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy [J]. Scr. Mater., 2013, 68: 555
doi: 10.1016/j.scriptamat.2012.11.024
|
44 |
Xie K W, Nie J F, Ma X, et al. Increasing the ductility of heat-resistant AlNp/Al composites by submicron Al2O3 particles [J]. Mater. Charact., 2020, 170: 110672
doi: 10.1016/j.matchar.2020.110672
|
45 |
Carvalho O, Buciumeanu M, Madeira S, et al. Mechanisms governing the mechanical behavior of an AlSi-CNTs-SiCp hybrid composite [J]. Composites, 2016, 90B: 443
|
46 |
Li S S, Su Y S, Zhu X H, et al. Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites [J]. Mater. Des., 2016, 107: 130
doi: 10.1016/j.matdes.2016.06.021
|
47 |
Qiu C H, Su Y S, Yang J Y, et al. Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations [J]. Composites, 2021, 220B: 108996
|
48 |
Fan G L, Xu R, Tan Z Q, et al. Development of flake powder metallurgy in fabricating metal matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 806
doi: 10.1007/s40195-014-0148-x
|
49 |
Xu R, Tan Z Q, Fan G L, et al. Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites [J]. Int. J. Plast., 2019, 120: 278
doi: 10.1016/j.ijplas.2019.05.006
|
50 |
Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
doi: 10.1016/j.scriptamat.2011.05.022
|
51 |
Jiang Y Y, Xu R, Tan Z Q, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites [J]. Carbon, 2019, 146: 17
doi: 10.1016/j.carbon.2019.01.094
|
52 |
Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
|
53 |
Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
doi: 10.1016/j.carbon.2017.02.089
|
54 |
Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
doi: 10.1021/acs.nanolett.5b03492
pmid: 26574873
|
55 |
Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
|
56 |
Yang L, Gao Q, Liu H, et al. Fabrication and properties of dual-gradient nanostructured copper matrix composites reinforced by silicon carbide particles [J]. Powder Metall. Technol., 2016, 34: 428
|
|
杨 雷, 高 求, 刘 鸿 等. 碳化硅颗粒强化铜基双梯度纳米结构复合材料的制备及性能 [J]. 粉末冶金技术, 2016, 34: 428
|
57 |
Ye J C, Han B Q, Lee Z, et al. A tri-modal aluminum based composite with super-high strength [J]. Scr. Mater., 2005, 53: 481
doi: 10.1016/j.scriptamat.2005.05.004
|
58 |
Zhang Z H, Topping T, Li Y, et al. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles [J]. Scr. Mater., 2011, 65: 652
doi: 10.1016/j.scriptamat.2011.06.037
|
59 |
Zan Y N, Zhou Y T, Liu Z Y, et al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites [J]. Mater. Des., 2019, 166: 107629
doi: 10.1016/j.matdes.2019.107629
|
60 |
Fu X W, Yu Z Y, Tan Z Q, et al. Enhanced strain hardening by bimodal grain structure in carbon nanotube reinforced Al-Mg composites [J]. Mater. Sci. Eng., 2021, A803: 140726
|
61 |
Ma K, Liu Z Y, Liu K, et al. Structure optimization for improving the strength and ductility of heterogeneous carbon nanotube/Al-Cu-Mg composites [J]. Carbon, 2021, 178: 190
doi: 10.1016/j.carbon.2021.03.006
|
62 |
Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation [J]. Carbon, 2020, 157: 602
doi: 10.1016/j.carbon.2019.10.080
|
63 |
Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
|
64 |
Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al-Cu-Mg composites with trimodal grain structure and strength-ductility synergy [J]. Composites, 2021, 225B: 109271
|
65 |
Luo X, Zhao K, He X, et al. Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite [J]. Acta Mater., 2022, 228: 117730
doi: 10.1016/j.actamat.2022.117730
|
66 |
Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
|
67 |
Wang H Y, Li C, Li Z G, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
|
|
王慧远, 李 超, 李志刚 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望 [J]. 金属学报, 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
|
68 |
Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
|
|
赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
|
69 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
70 |
So K P, Kushima A, Park J G, et al. Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys [J]. Adv. Sci., 2018, 5: 1800115
doi: 10.1002/advs.201800115
|
71 |
Liu Q B, Fan G L, Tan Z Q, et al. Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites [J]. Composites, 2021, 217B: 108915
|
72 |
Liu Q B, Fan G L, Tan Z Q, et al. Effect of thermomechanical treatment and length-scales on spatial distribution of CNTs in Al matrix [J]. Carbon, 2022, 190: 384
doi: 10.1016/j.carbon.2022.01.024
|
73 |
Zhang D L. Ultrafine grained metals and metal matrix nanocomposites fabricated by powder processing and thermomechanical powder consolidation [J]. Prog. Mater. Sci., 2021, 119: 100796
doi: 10.1016/j.pmatsci.2021.100796
|
74 |
Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
|
|
肖伯律, 黄治冶, 马 凯 等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
|
75 |
Schwarze C, Kamachali R D, Steinbach I. Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials [J]. Acta Mater., 2016, 106: 59
doi: 10.1016/j.actamat.2015.10.045
|
76 |
Li Y, Lin Y J, Xiong Y H, et al. Extended twinning phenomena in Al-4%Mg alloys/B4C nanocomposite [J]. Scr. Mater., 2011, 64: 133
doi: 10.1016/j.scriptamat.2010.09.027
|
77 |
Wang H, Geng H W, Zhou D S, et al. Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys [J]. Mater. Sci. Eng., 2020, A771: 138613
|
78 |
Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602
pmid: 23471404
|
79 |
Ni D R, Ma Z Y. Shape memory alloy-reinforced metal-matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 739
doi: 10.1007/s40195-014-0164-x
|
80 |
Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
|
81 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
82 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
83 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
84 |
Shuai L F, Huang T L, Yu T B, et al. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy [J]. Acta Mater., 2021, 206: 116595
doi: 10.1016/j.actamat.2020.116595
|
85 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
86 |
Shen M J, Wang X J, Zhang M F, et al. Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites [J]. Compos. Sci. Technol., 2015, 118: 85
doi: 10.1016/j.compscitech.2015.08.009
|
87 |
Sun H, Saba F, Fan G L, et al. Micro/nano-reinforcements in bimodal-grained matrix: A heterostructure strategy for toughening particulate reinforced metal matrix composites [J]. Scr. Mater., 2022, 217: 114774
doi: 10.1016/j.scriptamat.2022.114774
|
88 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
89 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
90 |
Wang D, Xiao B L, Ni D R, et al. Friction stir welding of discontinuously reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 816
doi: 10.1007/s40195-014-0143-2
|
91 |
Avettand-Fènoël M N, Simar A. A review about friction stir welding of metal matrix composites [J]. Mater. Charact., 2016, 120: 1
doi: 10.1016/j.matchar.2016.07.010
|
92 |
Dadkhah M, Mosallanejad M H, Iuliano L, et al. A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: Potential, challenges, and feasible solutions [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1173
doi: 10.1007/s40195-021-01249-7
|
93 |
Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
doi: 10.1002/adem.202100053
|
94 |
Zhang S, Van Dijk N, Van Der Zwaag S. A review of self-healing metals: Fundamentals, design principles and performance [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1167
doi: 10.1007/s40195-020-01102-3
|
95 |
Chen K X, Li L. Ordered structures with functional units as a paradigm of material design [J]. Adv. Mater., 2019, 31: 1901115
|
96 |
Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
|
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
97 |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
|
98 |
Qiu C H, Su Y S, Yang J Y, et al. Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review [J]. Composites, 2021, 4C: 100120
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|