Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1416-1426    DOI: 10.11900/0412.1961.2022.00355
Overview Current Issue | Archive | Adv Search |
Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites
FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang()
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites. Acta Metall Sin, 2022, 58(11): 1416-1426.

Download:  HTML  PDF(3126KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mechanical properties of metal matrix composites depend on not only the content of the reinforcements but also the composite architecture (shape, size, and spatial distribution). This paper focuses on the heterogeneous architecture design of metal matrix composites, including the heterogeneous architecture design of reinforcements and the intrinsic heterogeneous design of the matrix. In addition, it summarizes the development process of scale refinement, size quantification, and structural parameter diversification of metal matrix composite architecture design. The future development direction of architectural composite and the strengthening and toughing design of metal matrix composites based on the energy dissipation theory is also proposed.

Key words:  metal matrix composite      strengthening and toughening      heterogeneous architecture      energy dissipation     
Received:  27 July 2022     
ZTFLH:  TG148  
Fund: National Natural Science Foundation of China(52192592);National Natural Science Foundation of China(52192595);National Natural Science Foundation of China(52171143);National Natural Science Foundation of China(51871149)
About author:  LI Zhiqiang, professor, Tel: (021)34202749, E-mail: lizhq@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00355     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1416

Fig.1  Illustration of the typical heterogeneous architecture design in metal matrix composites: laminate architecture, multicore architecture, gradient architecture, network architecture, micro-nano hybrid architecture, brick-mortar architecture, gradient grain size, and bi-/multi- modal grains
Fig.2  Size-matching design and cooperative dispersion of micron particles and nanoparticles in the micro-nano hybrid architecture
(a-c) illustration of the micro-nano hybrid architecture[43]
(d) multi-step ball milling and powder assembly route to fabricate (B4Cp + Al2O3np)/Al[43]
(e) fabricate SiCp (CNT)/6061 composite by in-situ growing CNTs on SiC particles (CNT—carbon nanotube, CVD—chemical vapor deposition)[46]
Fig.3  Structure optimization of bimodal grain architecture based on interface affected zone (IAZ) theory and elastoplastic fracture mechanics
(a-c) bimodal microstructure of CNT/5083Al (a); best strength and ductility combination is obtained when the size of the coarse-grain (CG) zone approaches to about double of that of IAZ (b, c)[60] (d-f) bimodal microstructure of CNT/2009Al (d), and schematic of toughening mechanism in heterogeneous materials: stress concentration at the micro-crack tip induced plastic zone in coarse grain and crack blunting by joint action of multiple neighboring coarse grains when the size of the course-grain zone is close to that of the plastic zone (e-f)[61] (DZ—ductile zone, BZ—brittle zone, R0—size of the plastic deformation zone, a—half length of the crack, SC—stress concentration)
Fig.4  CNT/2024Al trimodal composites[63]
(a-d) typical three-level grain structures and the grain size distribution (e, f) tensile strength and ductility of CNT/2024Al with different grain structures
1 Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Mater. China, 2010, 29(4): 1
张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
2 Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strategic Study CAE, 2020, 22(2): 79
武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79
3 Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites—A review [J]. J. Mater. Sci., 1991, 26: 1137
doi: 10.1007/BF00544448
4 Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
5 Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
doi: 10.1016/j.compscitech.2005.05.027
6 Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
7 Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites [J]. Adv. Mater., 2021, 33: 2000688
doi: 10.1002/adma.202000688
8 Kumar P L, Lombardi A, Byczynski G, et al. Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review [J]. Prog. Mater. Sci., 2022, 128: 100948
doi: 10.1016/j.pmatsci.2022.100948
9 Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metall. Sin., 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
武高辉, 乔 菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展 [J]. 金属学报, 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
10 Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—A review [J]. Int. Mater. Rev., 2010, 55: 41
doi: 10.1179/095066009X12572530170543
11 Withers P J, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography [J]. Annu. Rev. Mater. Res., 2012, 42: 81
doi: 10.1146/annurev-matsci-070511-155111
12 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
13 Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon, 2011, 49: 533
doi: 10.1016/j.carbon.2010.09.054
14 Barai P, Weng G J. A theory of plasticity for carbon nanotube reinforced composites [J]. Int. J. Plast., 2011, 27: 539
doi: 10.1016/j.ijplas.2010.08.006
15 Kwon H, Park D H, Silvain J F, et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials [J]. Compos. Sci. Technol., 2010, 70: 546
doi: 10.1016/j.compscitech.2009.11.025
16 Chen B, Jia L, Li S F, et al. In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites [J]. Adv. Eng. Mater., 2014, 16: 972
doi: 10.1002/adem.201400232
17 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
18 Meyers M A, McKittrick J, Chen P Y. Structural biological materials: Critical mechanics-materials connections [J]. Science, 2013, 339: 773
doi: 10.1126/science.1220854 pmid: 23413348
19 Barthelat F, Yin Z, Buehler M J. Structure and mechanics of interfaces in biological materials [J]. Nat. Rev. Mater., 2016, 1: 16007
doi: 10.1038/natrevmats.2016.7
20 Libonati F, Buehler M J. Advanced structural materials by bioinspiration [J]. Adv. Eng. Mater., 2017, 19: 1600787
doi: 10.1002/adem.201600787
21 Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
22 Grishaber R B, Sergueeva A V, Mishra R S, et al. Laminated metal composites—High temperature deformation behavior [J]. Mater. Sci. Eng., 2005, A403: 17
23 Liu B X, Huang L J, Geng L, et al. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding [J]. J. Alloys Compd., 2014, 602: 187
doi: 10.1016/j.jallcom.2014.02.140
24 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
25 Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites, 2017, 108B: 377
26 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
27 Qin S Y, Zhang G D. Preparation of high fracture performance SiCp-6061A1/6061A1 composite [J]. Mater. Sci. Eng., 2000, A279: 231
28 Liu C, Qin S Y, Zhang G D, et al. Micromechanical properties of high fracture performance SiCp-6061Al/6061Al composite [J]. Mater. Sci. Eng., 2002, A332: 203
29 Chen L, Hou Z C, Liu Y F, et al. High strength and high ductility copper matrix composite reinforced by graded distribution of carbon nanotubes [J]. Composites, 2020, 138A: 106063
30 Guo C, Guo S W, Cheng Y, et al. Bending mechanical properties and its evaluation of aluminium alloy matrix gradient composites reinforced with SiC particles [J]. Acta Mater. Compos. Sin., 2002, 19(6): 57
郭 成, 郭生武, 程 羽 等. SiC颗粒增强铝合金基梯度复合材料弯曲力学性能及其评价 [J]. 复合材料学报, 2002, 19(6): 57
31 Wang W R, Xie H F, Xie L, et al. Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field [J]. Mater. Lett., 2018, 233: 4
doi: 10.1016/j.matlet.2018.08.059
32 Moon R J, Tilbrook M, Hoffman M, et al. Al-Al2O3 composites with interpenetrating network structures: Composite modulus estimation [J]. J. Am. Ceram. Soc., 2005, 88: 666
doi: 10.1111/j.1551-2916.2005.00115.x
33 Dong Z Q, Zhang L, Chen W X. Evaluation of Cu-Cr3C2 composite with interpenetrating network [J]. Mater. Sci. Eng., 2012, A552: 24
34 Kaveendran B, Wang G S, Huang L J, et al. In situ (Al3Zr + Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing [J]. J. Alloys Compd., 2013, 581: 16
doi: 10.1016/j.jallcom.2013.06.143
35 Jiao Y, Huang L J, Duan T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3 + TiBw)/Ti6Al4V composites [J]. Sci. Rep., 2016, 6: 32991
doi: 10.1038/srep32991 pmid: 27622992
36 De Castro V, Leguey T, Muñoz A, et al. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting [J]. Mater. Sci. Eng., 2006, A422: 189
37 Yang Z F, Lu W J, Qin J N, et al. Microstructural characterization of Nd2O3 in in situ synthesized multiple-reinforced (TiB + TiC + Nd2O3)/Ti composites [J]. J. Alloys Compd., 2006, 425: 379
doi: 10.1016/j.jallcom.2006.01.045
38 Xiao L, Lu W J, Qin J N, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite [J]. Compos. Sci. Technol., 2009, 69: 1925
doi: 10.1016/j.compscitech.2009.04.009
39 Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network [J]. Nanoscale, 2017, 9: 11929
doi: 10.1039/c6nr07335b pmid: 28786440
40 Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
doi: 10.1016/j.matdes.2013.05.067
41 Chand S, Chandrasekhar P, Sarangi R K, et al. Influence of B4C particles on processing and strengthening mechanisms in aluminum metal matrix composites—A review [J]. Mater. Today: Proc., 2019, 18: 5356
42 Khorshid M T, Jahromi S A J, Moshksar M M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion [J]. Mater. Des., 2010, 31: 3880
doi: 10.1016/j.matdes.2010.02.047
43 Kai X Z, Li Z Q, Fan G L, et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy [J]. Scr. Mater., 2013, 68: 555
doi: 10.1016/j.scriptamat.2012.11.024
44 Xie K W, Nie J F, Ma X, et al. Increasing the ductility of heat-resistant AlNp/Al composites by submicron Al2O3 particles [J]. Mater. Charact., 2020, 170: 110672
doi: 10.1016/j.matchar.2020.110672
45 Carvalho O, Buciumeanu M, Madeira S, et al. Mechanisms governing the mechanical behavior of an AlSi-CNTs-SiCp hybrid composite [J]. Composites, 2016, 90B: 443
46 Li S S, Su Y S, Zhu X H, et al. Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites [J]. Mater. Des., 2016, 107: 130
doi: 10.1016/j.matdes.2016.06.021
47 Qiu C H, Su Y S, Yang J Y, et al. Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations [J]. Composites, 2021, 220B: 108996
48 Fan G L, Xu R, Tan Z Q, et al. Development of flake powder metallurgy in fabricating metal matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 806
doi: 10.1007/s40195-014-0148-x
49 Xu R, Tan Z Q, Fan G L, et al. Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites [J]. Int. J. Plast., 2019, 120: 278
doi: 10.1016/j.ijplas.2019.05.006
50 Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
doi: 10.1016/j.scriptamat.2011.05.022
51 Jiang Y Y, Xu R, Tan Z Q, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites [J]. Carbon, 2019, 146: 17
doi: 10.1016/j.carbon.2019.01.094
52 Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
53 Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
doi: 10.1016/j.carbon.2017.02.089
54 Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
doi: 10.1021/acs.nanolett.5b03492 pmid: 26574873
55 Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
56 Yang L, Gao Q, Liu H, et al. Fabrication and properties of dual-gradient nanostructured copper matrix composites reinforced by silicon carbide particles [J]. Powder Metall. Technol., 2016, 34: 428
杨 雷, 高 求, 刘 鸿 等. 碳化硅颗粒强化铜基双梯度纳米结构复合材料的制备及性能 [J]. 粉末冶金技术, 2016, 34: 428
57 Ye J C, Han B Q, Lee Z, et al. A tri-modal aluminum based composite with super-high strength [J]. Scr. Mater., 2005, 53: 481
doi: 10.1016/j.scriptamat.2005.05.004
58 Zhang Z H, Topping T, Li Y, et al. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles [J]. Scr. Mater., 2011, 65: 652
doi: 10.1016/j.scriptamat.2011.06.037
59 Zan Y N, Zhou Y T, Liu Z Y, et al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites [J]. Mater. Des., 2019, 166: 107629
doi: 10.1016/j.matdes.2019.107629
60 Fu X W, Yu Z Y, Tan Z Q, et al. Enhanced strain hardening by bimodal grain structure in carbon nanotube reinforced Al-Mg composites [J]. Mater. Sci. Eng., 2021, A803: 140726
61 Ma K, Liu Z Y, Liu K, et al. Structure optimization for improving the strength and ductility of heterogeneous carbon nanotube/Al-Cu-Mg composites [J]. Carbon, 2021, 178: 190
doi: 10.1016/j.carbon.2021.03.006
62 Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation [J]. Carbon, 2020, 157: 602
doi: 10.1016/j.carbon.2019.10.080
63 Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
64 Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al-Cu-Mg composites with trimodal grain structure and strength-ductility synergy [J]. Composites, 2021, 225B: 109271
65 Luo X, Zhao K, He X, et al. Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite [J]. Acta Mater., 2022, 228: 117730
doi: 10.1016/j.actamat.2022.117730
66 Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
67 Wang H Y, Li C, Li Z G, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
王慧远, 李 超, 李志刚 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望 [J]. 金属学报, 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
68 Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
69 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
70 So K P, Kushima A, Park J G, et al. Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys [J]. Adv. Sci., 2018, 5: 1800115
doi: 10.1002/advs.201800115
71 Liu Q B, Fan G L, Tan Z Q, et al. Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites [J]. Composites, 2021, 217B: 108915
72 Liu Q B, Fan G L, Tan Z Q, et al. Effect of thermomechanical treatment and length-scales on spatial distribution of CNTs in Al matrix [J]. Carbon, 2022, 190: 384
doi: 10.1016/j.carbon.2022.01.024
73 Zhang D L. Ultrafine grained metals and metal matrix nanocomposites fabricated by powder processing and thermomechanical powder consolidation [J]. Prog. Mater. Sci., 2021, 119: 100796
doi: 10.1016/j.pmatsci.2021.100796
74 Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
肖伯律, 黄治冶, 马 凯 等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
75 Schwarze C, Kamachali R D, Steinbach I. Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials [J]. Acta Mater., 2016, 106: 59
doi: 10.1016/j.actamat.2015.10.045
76 Li Y, Lin Y J, Xiong Y H, et al. Extended twinning phenomena in Al-4%Mg alloys/B4C nanocomposite [J]. Scr. Mater., 2011, 64: 133
doi: 10.1016/j.scriptamat.2010.09.027
77 Wang H, Geng H W, Zhou D S, et al. Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys [J]. Mater. Sci. Eng., 2020, A771: 138613
78 Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602 pmid: 23471404
79 Ni D R, Ma Z Y. Shape memory alloy-reinforced metal-matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 739
doi: 10.1007/s40195-014-0164-x
80 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
81 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
82 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
83 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
84 Shuai L F, Huang T L, Yu T B, et al. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy [J]. Acta Mater., 2021, 206: 116595
doi: 10.1016/j.actamat.2020.116595
85 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
86 Shen M J, Wang X J, Zhang M F, et al. Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites [J]. Compos. Sci. Technol., 2015, 118: 85
doi: 10.1016/j.compscitech.2015.08.009
87 Sun H, Saba F, Fan G L, et al. Micro/nano-reinforcements in bimodal-grained matrix: A heterostructure strategy for toughening particulate reinforced metal matrix composites [J]. Scr. Mater., 2022, 217: 114774
doi: 10.1016/j.scriptamat.2022.114774
88 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
89 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
90 Wang D, Xiao B L, Ni D R, et al. Friction stir welding of discontinuously reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 816
doi: 10.1007/s40195-014-0143-2
91 Avettand-Fènoël M N, Simar A. A review about friction stir welding of metal matrix composites [J]. Mater. Charact., 2016, 120: 1
doi: 10.1016/j.matchar.2016.07.010
92 Dadkhah M, Mosallanejad M H, Iuliano L, et al. A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: Potential, challenges, and feasible solutions [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1173
doi: 10.1007/s40195-021-01249-7
93 Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
doi: 10.1002/adem.202100053
94 Zhang S, Van Dijk N, Van Der Zwaag S. A review of self-healing metals: Fundamentals, design principles and performance [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1167
doi: 10.1007/s40195-020-01102-3
95 Chen K X, Li L. Ordered structures with functional units as a paradigm of material design [J]. Adv. Mater., 2019, 31: 1901115
96 Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
97 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
98 Qiu C H, Su Y S, Yang J Y, et al. Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review [J]. Composites, 2021, 4C: 100120
[1] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[2] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[3] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[4] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[5] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[6] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[7] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[8] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[9] Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites[J]. 金属学报, 2019, 55(6): 683-691.
[10] MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2019, 55(10): 1319-1328.
[11] Xiaojun WANG, Yeyang XIANG, Xiaoshi HU, Kun WU. Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials[J]. 金属学报, 2019, 55(1): 73-86.
[12] Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 109-125.
[13] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[14] Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites[J]. 金属学报, 2019, 55(1): 33-44.
[15] Tongxiang FAN, Yue LIU, Kunming YANG, Jian SONG, Di ZHANG. Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 16-32.
No Suggested Reading articles found!