|
|
Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy |
GUO Haohan1, YANG Jie1( ), LIU Fang2, LU Rongsheng3 |
1.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 3.Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China |
|
Cite this article:
GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy. Acta Metall Sin, 2022, 58(12): 1633-1644.
|
Abstract Nickel-based GH4169 superalloy is used as turbine disc material in aeroengines because of its good oxidation resistance, good formability, weldability, and high strength. However, turbine disc fatigue failure will inevitably occur in onerous service environments and after a long operation time. To ensure the safety and reliability of aeroengines, the fatigue damage behavior and fatigue life of GH4169 superalloy need to be studied. Constraint is an important factor affecting the fatigue fracture behavior of materials, because changing it will impact the fatigue behavior. To achieve a long service life and high reliability of aeroengines, fatigue and constraint effects must be researched. However, there are only limited studies on the effect of constraint on fatigue crack initiation time. In this study, a crystal plasticity constitutive model based on low cycle fatigue rate correlation was applied to the GH4169 superalloy. Two fatigue indicators, namely the cumulated energy dissipation and cumulated plastic slip, were introduced as fatigue crack initiation criteria to study the fatigue crack initiation time for different micro-notch depths and lengths. In addition, the relationship between constraint and fatigue crack initiation life was further investigated using the unified constraint parameter Ap. The results showed that both cumulated energy dissipation and cumulated plastic slip can accurately predict the fatigue crack initiation time. With the increase in micro-notch depth, the fatigue crack initiation time decreased, while it increased with the increase in micro-notch length. A linear relationship between the fatigue crack initiation time and under different micro-notch depths and lengths was observed. Based on this relationship, the constraint related to the fatigue crack initiation time can be determined.
|
Received: 07 March 2022
|
|
Fund: National Natural Science Foundation of China(51975378);Shanghai Pujiang Program(21PJD047) |
About author: YANG Jie, associate professor, Tel: (021)55272320, E-mail: yangjie@usst.edu.cn
|
1 |
Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng., 2016, A678: 137
|
2 |
Chen F, Liu J, Ou H G, et al. Flow characteristics and intrinsic workability of IN718 superalloy [J]. Mater. Sci. Eng., 2015, A642: 279
|
3 |
McDowell D, Dunne F P E. Microstructure-sensitive computational modeling of fatigue crack formation [J]. Int. J. Fatigue, 2010, 32: 1521
doi: 10.1016/j.ijfatigue.2010.01.003
|
4 |
Deng G J, Tu S T, Zhang X C, et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650℃ in air [J]. Eng. Fract. Mech., 2016, 153: 35
doi: 10.1016/j.engfracmech.2015.12.014
|
5 |
Cini A, Irving P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part I: Experimentation and fractographic analysis [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 776
doi: 10.1111/ffe.12544
|
6 |
Cini A, Irving P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part II: Finite element analysis and prediction method [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 853
doi: 10.1111/ffe.12545
|
7 |
Shang D G, Chen J H, Sun G Q, et al. Fatigue characteristics for GH4169 superalloy under uniaxial/multiaxial loading at high temperature [J]. Acta Metall. Sin., 2005, 41: 785
|
|
尚德广, 陈建华, 孙国芹 等. 单、多轴混合加载下GH4169合金的高温疲劳特性 [J]. 金属学报, 2005, 41: 785
|
8 |
Shang D G, Sun G Q, Chen J H, et al. Multiaxial fatigue behavior of Ni-based superalloy GH4169 at 650℃ [J]. Mater. Sci. Eng., 2006, A432: 231
|
9 |
Sun G Q, Shang D G. Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis [J]. Mater. Des., 2010, 31: 126
doi: 10.1016/j.matdes.2009.06.046
|
10 |
Sun G Q, Shang D G, Bao M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials [J]. Int. J. Fatigue, 2010, 32: 1108
doi: 10.1016/j.ijfatigue.2009.12.007
|
11 |
Prasad K, Sarkar R, Ghosal P, et al. High temperature low cycle fatigue deformation behaviour of forged IN718 superalloy turbine disc [J]. Mater. Sci. Eng., 2013, A568: 239
|
12 |
Walz G, Riesch-Oppermann H. Probabilistic fracture mechanics assessment of flaws in turbine disks including quality assurance procedures [J]. Struct. Saf., 2006, 28: 273
doi: 10.1016/j.strusafe.2005.08.004
|
13 |
Wei D S, Yang X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions [J]. Int. J. Press. Vessel. Pip., 2009, 86: 616
doi: 10.1016/j.ijpvp.2009.04.002
|
14 |
Ayyappan C, Kumar R, Ramesh P, et al. Experimental and numerical study to predict residual growth in an aeroengine compressor disc after overspeed [J]. Procedia Eng., 2013, 55: 625
doi: 10.1016/j.proeng.2013.03.305
|
15 |
Krupp U. Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts [M]. Weinheim: Wiley-VCH, 2007: 1
|
16 |
An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature [J]. Mater. Sci. Eng., 2017, A684: 312
|
17 |
Alexandre F, Deyber S, Pineau A. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites [J]. Scr. Mater., 2004, 50: 25
doi: 10.1016/j.scriptamat.2003.09.043
|
18 |
Huang X Y, Yu H C, Xu M Q, et al. Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169 [J]. Int. J. Fatigue, 2012, 42: 153
doi: 10.1016/j.ijfatigue.2011.09.003
|
19 |
Hu D Y, Wang X Y, Mao J X, et al. Creep-fatigue crack growth behavior in GH4169 superalloy [J]. Front. Mech. Eng., 2019, 14: 369
doi: 10.1007/s11465-018-0489-7
|
20 |
Guerchais R, Saintier N, Morel F, et al. Micromechanical investigation of the influence of defects in high cycle fatigue [J]. Int. J. Fatigue, 2014, 67: 159
doi: 10.1016/j.ijfatigue.2014.01.005
|
21 |
Zhang P, Zhang L, Baxevanakis K P, et al. Modelling short crack propagation in a single crystal nickel-based superalloy using crystal plasticity and XFEM [J]. Int. J. Fatigue, 2020, 136: 105594
|
22 |
Zhang P, Baxevanakis K P, Zhao L G. An investigation of short crack propagation in a single crystal Ni-based superalloy using crystal plasticity and the extended finite element method [J]. Procedia Struct. Integr., 2020, 28: 1176
doi: 10.1016/j.prostr.2020.11.099
|
23 |
Manonukul A, Dunne F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity [J]. Proc. Roy. Soc., 2004, 460A: 1881
|
24 |
Dunne F P E, Wilkinson A J, Allen R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal [J]. Int. J. Plast., 2007, 23: 273
doi: 10.1016/j.ijplas.2006.07.001
|
25 |
Guo Q, Guo X L, Fan J L, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation [J]. Int. J. Fatigue, 2015, 80: 136
doi: 10.1016/j.ijfatigue.2015.04.016
|
26 |
Guo Q, Guo X L. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation [J]. Mater. Des., 2016, 90: 248
doi: 10.1016/j.matdes.2015.10.103
|
27 |
Yuan G J, Zhang X C, Chen B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38, 28
doi: 10.1016/j.jmst.2019.05.072
|
28 |
Varfolomeev I, Luke M, Moroz S. Experimental and numerical investigations of fatigue crack growth in various specimen geometries [J]. Procedia Eng., 2010, 2: 1829
doi: 10.1016/j.proeng.2010.03.197
|
29 |
Hutař P, Seitl S, Knésl Z. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel [J]. Comput. Mater. Sci., 2006, 37: 51
|
30 |
Hutař P, Seitl S, Kruml T. Effect of specimen geometry on fatigue crack propagation in threshold region [A]. Proceedings of the 12th International Conference on Fracture [C]. icf12 Ottawa, 2009: 4: 2914
|
31 |
Tong J. T-stress and its implications for crack growth [J]. Eng. Fract. Mech., 2002, 69: 1325
doi: 10.1016/S0013-7944(02)00002-4
|
32 |
Seitl S, Hutař P. Fatigue-crack propagation near a threshold region in the framework of two-parameter fracture mechanics [J]. Mater. Technol., 2007, 41: 135
|
33 |
Yang J, Guo G L, Lu R S, et al. Numerical modelling of a new FCP model and a correlation of the FCP rate with the constraint [J]. Int. J. Fatigue, 2022, 163: 107036
|
34 |
Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 115
|
35 |
Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. J. Mech. Phys. Solids, 1977, 25: 309
doi: 10.1016/0022-5096(77)90001-1
|
36 |
Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
doi: 10.1016/0001-6160(83)90014-7
|
37 |
Zhong F. Researches on tensile properties and fatigue behavior of Ni-based alloy GH4169 based on crystal plasticity finite element [D]. Shanghai: East China University of Science and Technology, 2017
|
|
钟飞. 基于晶体塑性有限元的镍基合金GH4169拉伸性能及疲劳行为研究 [D]. 上海: 华东理工大学, 2017
|
38 |
Barbe F, Decker L, Jeulin D, et al. Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model [J]. Int. J. Plast., 2001, 17: 513
doi: 10.1016/S0749-6419(00)00061-9
|
39 |
Lin B, Zhao L G, Tong J. A crystal plasticity study of cyclic constitutive behaviour, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy [J]. Eng. Fract. Mech., 2011, 78: 2174
doi: 10.1016/j.engfracmech.2011.04.006
|
40 |
Yang J, Wang G Z, Xuan F Z, et al. Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504
doi: 10.1111/ffe.12019
|
41 |
Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraints with fracture toughness [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 132
doi: 10.1111/ffe.12094
|
42 |
Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
doi: 10.1016/j.engfracmech.2013.11.018
|
43 |
Chikh B O, Imad A, Benguediab M. Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel [J]. Comput. Mater. Sci., 2008, 43: 1010
doi: 10.1016/j.commatsci.2008.02.019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|