Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (12): 1633-1644    DOI: 10.11900/0412.1961.2022.00099
Research paper Current Issue | Archive | Adv Search |
Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy
GUO Haohan1, YANG Jie1(), LIU Fang2, LU Rongsheng3
1.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3.Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
Cite this article: 

GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy. Acta Metall Sin, 2022, 58(12): 1633-1644.

Download:  HTML  PDF(3733KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel-based GH4169 superalloy is used as turbine disc material in aeroengines because of its good oxidation resistance, good formability, weldability, and high strength. However, turbine disc fatigue failure will inevitably occur in onerous service environments and after a long operation time. To ensure the safety and reliability of aeroengines, the fatigue damage behavior and fatigue life of GH4169 superalloy need to be studied. Constraint is an important factor affecting the fatigue fracture behavior of materials, because changing it will impact the fatigue behavior. To achieve a long service life and high reliability of aeroengines, fatigue and constraint effects must be researched. However, there are only limited studies on the effect of constraint on fatigue crack initiation time. In this study, a crystal plasticity constitutive model based on low cycle fatigue rate correlation was applied to the GH4169 superalloy. Two fatigue indicators, namely the cumulated energy dissipation and cumulated plastic slip, were introduced as fatigue crack initiation criteria to study the fatigue crack initiation time for different micro-notch depths and lengths. In addition, the relationship between constraint and fatigue crack initiation life was further investigated using the unified constraint parameter Ap. The results showed that both cumulated energy dissipation and cumulated plastic slip can accurately predict the fatigue crack initiation time. With the increase in micro-notch depth, the fatigue crack initiation time decreased, while it increased with the increase in micro-notch length. A linear relationship between the fatigue crack initiation time and Ap under different micro-notch depths and lengths was observed. Based on this relationship, the constraint related to the fatigue crack initiation time can be determined.

Key words:  constraint      fatigue crack      initiation life      crystal plasticity      cumulated energy dissipation      cumulated plastic slip     
Received:  07 March 2022     
ZTFLH:  TH114  
Fund: National Natural Science Foundation of China(51975378);Shanghai Pujiang Program(21PJD047)
About author:  YANG Jie, associate professor, Tel: (021)55272320, E-mail: yangjie@usst.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00099     OR     https://www.ams.org.cn/EN/Y2022/V58/I12/1633

Fig.1  A representative volume element (RVE) of GH4169 nickel base superalloy
Fig.2  Schematic of model loading and geometry (a—micro-notch depth, b—micro-notch length, RP—reference point)
Fig.3  Stress-strain curves and plastic slips based on three different mesh sizes
Fig.4  Accumulated energy dissipation illustrations of models with different micro-notch depths when the strain amplitude Δεt = 0.6% and the cycle number is 10 cyc (unit: MJ/m3)
(a) a = 15 μm (b) a = 45 μm
(c) a = 75 μm (d) a = 105 μm
Fig.5  Relationships between accumulated energy dissipation and cycle number
(a) Δεt = 0.6% (b) Δεt = 0.8% (c) Δεt = 1.0%
Fig.6  Hysteresis loops of the point at the lower left corner of the micro-notch at Δεt = 0.6% and the 10th cycle
Fig.7  Accumulated plastic slip illustrations of models with different micro-notch depths when Δεt = 0.6% and the cycle number is 10 cyc
(a) a = 15 μm (b) a = 45 μm (c) a = 75 μm (d) a = 105 μm
Fig.8  Relationships between accumulated plastic slip and cycle number
(a) Δεt = 0.6% (b) Δεt = 0.8% (c) Δεt = 1.0%
Fig.9  Comparisons of predicted fatigue crack initiation life based on accumulated energy dissipation and accumulated plastic slip
Fig.10  Accumulated energy dissipation illustrations of models with different micro-notch lengths when Δεt = 0.6% and the cycle number is 10 cyc (unit: MJ/m3)
(a) b = 15 μm (b) b = 45 μm (c) b = 75 μm (d) b = 105 μm
Fig.11  Relationships between accumulated energy dissipation and cycle number
(a) Δεt = 0.6% (b) Δεt = 0.8% (c) Δεt = 1.0%
Fig.12  Hysteresis loops of the point at the lower left corner of the micro-notch at Δεt = 0.6% and the 10th cycle
Fig.13  Accumulated plastic slip illustrations of models with different micro-notch lengths when Δεt = 0.6% and the cycle number is 10 cyc
(a) a = 15 μm (b) a = 45 μm (c) a = 75 μm (d) a = 105 μm
Fig.14  Relationships between accumulated plastic slip and cycle number
(a) Δεt = 0.6% (b) Δεt = 0.8% (c) Δεt = 1.0%
Fig.15  Comparisons of predicted fatigue crack initiation life based on accumulated energy dissipation and accumulated plastic slip
Fig.16  Relationships between fatigue crack initiation life and constraint
(a) different micro-notch depth
(b) different micro-notch length
Fig.17  Relationship between fatigue crack initiation life and constraint of all models
1 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng., 2016, A678: 137
2 Chen F, Liu J, Ou H G, et al. Flow characteristics and intrinsic workability of IN718 superalloy [J]. Mater. Sci. Eng., 2015, A642: 279
3 McDowell D, Dunne F P E. Microstructure-sensitive computational modeling of fatigue crack formation [J]. Int. J. Fatigue, 2010, 32: 1521
doi: 10.1016/j.ijfatigue.2010.01.003
4 Deng G J, Tu S T, Zhang X C, et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650℃ in air [J]. Eng. Fract. Mech., 2016, 153: 35
doi: 10.1016/j.engfracmech.2015.12.014
5 Cini A, Irving P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part I: Experimentation and fractographic analysis [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 776
doi: 10.1111/ffe.12544
6 Cini A, Irving P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part II: Finite element analysis and prediction method [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 853
doi: 10.1111/ffe.12545
7 Shang D G, Chen J H, Sun G Q, et al. Fatigue characteristics for GH4169 superalloy under uniaxial/multiaxial loading at high temperature [J]. Acta Metall. Sin., 2005, 41: 785
尚德广, 陈建华, 孙国芹 等. 单、多轴混合加载下GH4169合金的高温疲劳特性 [J]. 金属学报, 2005, 41: 785
8 Shang D G, Sun G Q, Chen J H, et al. Multiaxial fatigue behavior of Ni-based superalloy GH4169 at 650℃ [J]. Mater. Sci. Eng., 2006, A432: 231
9 Sun G Q, Shang D G. Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis [J]. Mater. Des., 2010, 31: 126
doi: 10.1016/j.matdes.2009.06.046
10 Sun G Q, Shang D G, Bao M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials [J]. Int. J. Fatigue, 2010, 32: 1108
doi: 10.1016/j.ijfatigue.2009.12.007
11 Prasad K, Sarkar R, Ghosal P, et al. High temperature low cycle fatigue deformation behaviour of forged IN718 superalloy turbine disc [J]. Mater. Sci. Eng., 2013, A568: 239
12 Walz G, Riesch-Oppermann H. Probabilistic fracture mechanics assessment of flaws in turbine disks including quality assurance procedures [J]. Struct. Saf., 2006, 28: 273
doi: 10.1016/j.strusafe.2005.08.004
13 Wei D S, Yang X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions [J]. Int. J. Press. Vessel. Pip., 2009, 86: 616
doi: 10.1016/j.ijpvp.2009.04.002
14 Ayyappan C, Kumar R, Ramesh P, et al. Experimental and numerical study to predict residual growth in an aeroengine compressor disc after overspeed [J]. Procedia Eng., 2013, 55: 625
doi: 10.1016/j.proeng.2013.03.305
15 Krupp U. Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts [M]. Weinheim: Wiley-VCH, 2007: 1
16 An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature [J]. Mater. Sci. Eng., 2017, A684: 312
17 Alexandre F, Deyber S, Pineau A. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites [J]. Scr. Mater., 2004, 50: 25
doi: 10.1016/j.scriptamat.2003.09.043
18 Huang X Y, Yu H C, Xu M Q, et al. Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169 [J]. Int. J. Fatigue, 2012, 42: 153
doi: 10.1016/j.ijfatigue.2011.09.003
19 Hu D Y, Wang X Y, Mao J X, et al. Creep-fatigue crack growth behavior in GH4169 superalloy [J]. Front. Mech. Eng., 2019, 14: 369
doi: 10.1007/s11465-018-0489-7
20 Guerchais R, Saintier N, Morel F, et al. Micromechanical investigation of the influence of defects in high cycle fatigue [J]. Int. J. Fatigue, 2014, 67: 159
doi: 10.1016/j.ijfatigue.2014.01.005
21 Zhang P, Zhang L, Baxevanakis K P, et al. Modelling short crack propagation in a single crystal nickel-based superalloy using crystal plasticity and XFEM [J]. Int. J. Fatigue, 2020, 136: 105594
22 Zhang P, Baxevanakis K P, Zhao L G. An investigation of short crack propagation in a single crystal Ni-based superalloy using crystal plasticity and the extended finite element method [J]. Procedia Struct. Integr., 2020, 28: 1176
doi: 10.1016/j.prostr.2020.11.099
23 Manonukul A, Dunne F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity [J]. Proc. Roy. Soc., 2004, 460A: 1881
24 Dunne F P E, Wilkinson A J, Allen R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal [J]. Int. J. Plast., 2007, 23: 273
doi: 10.1016/j.ijplas.2006.07.001
25 Guo Q, Guo X L, Fan J L, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation [J]. Int. J. Fatigue, 2015, 80: 136
doi: 10.1016/j.ijfatigue.2015.04.016
26 Guo Q, Guo X L. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation [J]. Mater. Des., 2016, 90: 248
doi: 10.1016/j.matdes.2015.10.103
27 Yuan G J, Zhang X C, Chen B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38, 28
doi: 10.1016/j.jmst.2019.05.072
28 Varfolomeev I, Luke M, Moroz S. Experimental and numerical investigations of fatigue crack growth in various specimen geometries [J]. Procedia Eng., 2010, 2: 1829
doi: 10.1016/j.proeng.2010.03.197
29 Hutař P, Seitl S, Knésl Z. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel [J]. Comput. Mater. Sci., 2006, 37: 51
30 Hutař P, Seitl S, Kruml T. Effect of specimen geometry on fatigue crack propagation in threshold region [A]. Proceedings of the 12th International Conference on Fracture [C]. icf12 Ottawa, 2009: 4: 2914
31 Tong J. T-stress and its implications for crack growth [J]. Eng. Fract. Mech., 2002, 69: 1325
doi: 10.1016/S0013-7944(02)00002-4
32 Seitl S, Hutař P. Fatigue-crack propagation near a threshold region in the framework of two-parameter fracture mechanics [J]. Mater. Technol., 2007, 41: 135
33 Yang J, Guo G L, Lu R S, et al. Numerical modelling of a new FCP model and a correlation of the FCP rate with the constraint [J]. Int. J. Fatigue, 2022, 163: 107036
34 Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 115
35 Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. J. Mech. Phys. Solids, 1977, 25: 309
doi: 10.1016/0022-5096(77)90001-1
36 Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
doi: 10.1016/0001-6160(83)90014-7
37 Zhong F. Researches on tensile properties and fatigue behavior of Ni-based alloy GH4169 based on crystal plasticity finite element [D]. Shanghai: East China University of Science and Technology, 2017
钟飞. 基于晶体塑性有限元的镍基合金GH4169拉伸性能及疲劳行为研究 [D]. 上海: 华东理工大学, 2017
38 Barbe F, Decker L, Jeulin D, et al. Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model [J]. Int. J. Plast., 2001, 17: 513
doi: 10.1016/S0749-6419(00)00061-9
39 Lin B, Zhao L G, Tong J. A crystal plasticity study of cyclic constitutive behaviour, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy [J]. Eng. Fract. Mech., 2011, 78: 2174
doi: 10.1016/j.engfracmech.2011.04.006
40 Yang J, Wang G Z, Xuan F Z, et al. Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504
doi: 10.1111/ffe.12019
41 Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraints with fracture toughness [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 132
doi: 10.1111/ffe.12094
42 Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
doi: 10.1016/j.engfracmech.2013.11.018
43 Chikh B O, Imad A, Benguediab M. Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel [J]. Comput. Mater. Sci., 2008, 43: 1010
doi: 10.1016/j.commatsci.2008.02.019
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[6] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[9] DAI Yue, YANG Jie, CHEN Haofeng. Effect Range of Material Constraint in Nuclear Safe End Structure[J]. 金属学报, 2021, 57(12): 1645-1652.
[10] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[11] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[12] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[13] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[14] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[15] Shiwei HAN, Duoqi SHI, Xiaoguang YANG, Guolei MIAO. COMPUTATIONAL STUDY ON MICROSTRUCTURE-SENSITIVE HIGH CYCLE FATIGUE DISPERSIVITY[J]. 金属学报, 2016, 52(3): 289-297.
No Suggested Reading articles found!