Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1319-1328    DOI: 10.11900/0412.1961.2018.00523
Current Issue | Archive | Adv Search |
Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites
MA Guonan1,2,WANG Dong1(),LIU Zhenyu1,BI Sheng1,2,ZAN Yuning1,2,XIAO Bolv1,MA Zongyi1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Download:  HTML  PDF(20713KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Particulate reinforced aluminum matrix composites have been widely used in industrial fields. In general, high strength aluminium alloys, such as 2024Al are employed to produce stronger composites. However, the composites with high strength Al-Zn-Mg-Cu alloys as the matrices are paid relative attentions. Therefore, the corresponding optimization for fabrication parameters has not been well understood. In the present work, SiC particles with volume fraction of 15% reinforced Al-7.5Zn-2.8Mg-1.7Cu (mass fraction, %) composites were fabricated using powder metallurgy (PM) technique at hot pressing temperatures of 500, 520, 540 and 560 ℃. TEM, EPMA and tensile test were used to study the effect of hot pressing temperature on the microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites. The measured densities indicated that all the composites were completely condensed, no pores were observed. Undissolved phase containing Mg and Cu segregated in matrix of the composites hot pressed at 500 and 520 ℃, resulting in instable tensile properties. With increasing hot pressing temperature to 540 ℃, Mg and Cu were uniformly distributed in the composites which exhibited the stable tensile properties. With further increasing temperature to 560 ℃, Mg segregated around SiC particles due to interface reaction. In this case, the content of MgZn2 phase was decreased, resulting in the reduction of tensile strength. HAADF-STEM and EDS analyses showed that the interface compounds were oxide of Mg and coarse MgZn2 phase.

Key words:  powder metallurgy      metal matrix composite      interface      precipitate     
Received:  20 November 2018     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(52017YFB0703104);National Natural Science Foundation of China(51771193);National Natural Science Foundation of China(U1508216)
Corresponding Authors:  Dong WANG     E-mail:  dongwang@imr.ac.cn

Cite this article: 

MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites. Acta Metall Sin, 2019, 55(10): 1319-1328.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00523     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1319

Hot pressing temperature / ℃Measured density / (g·cm-3)Relative density / %
5002.87799.93
5202.87899.96
5402.879100.00
5602.881100.01
Table 1  Measured density and relative density of SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at different temperatures
Fig.1  OM images of as-extruded SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at 500 ℃ (a), 520 ℃ (b), 540 ℃ (c) and 560 ℃ (d) (Solid lines in Fig.1 indicate SiC particle poor band-like zones)
Fig.2  Homogeneity distributions of SiC particles in as-extruded SiC/Al-7.5Zn-2.8Mg-1.7Cu composites
Fig.3  XRD spectra of as-extruded SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at different temperatures
Fig.4  SE-SEM image (a) and elemental distribution maps of Zn (b), O (c), Mg (d) and Cu (e) in T6-treated SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at 500 ℃ (m—atomic fraction)
Fig.5  SE-SEM images (a, e, i) and elemental distribution maps of Zn (b, f, j), Mg (c, g, k) and Cu (d, h, l) in T6-treated SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at 520 ℃ (a~d), 540 ℃ (e~h) and 560 ℃ (i~l) (Arrows show the segregations)
Fig.6  TEM images of the interface of T6-treated SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at 500 ℃ (a), 520 ℃ (b), 540 ℃ (c), 560 ℃ (d, e), and HAADF-STEM image of Fig.6e (f) (Inset in Fig.6f shows the EDS analysis result of the interface reaction products)
Fig.7  TEM image and elemental distribution maps of interface of T6-treated SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at 560 ℃

Hot pressing temperature

Tensile strength

MPa

Yield strength

MPa

Elongation

%

500679±13645±192.8±0.6
520675±8637±103.0±0.4
540671±6632±63.2±0.6
560658±10620±103.4±0.4
Table 2  Tensile properties of T6-treated SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at different temperatures
Fig.8  SEM fractographs of T6-treated SiC/Al-7.5Zn-2.8Mg-1.7Cu composites hot pressed at 500 ℃ (a), 520 ℃ (b), 540 ℃ (c) and 560 ℃ (d) (Solid lines show tearing edges. Inset in Fig.8d shows the interface crack)
[1] Song J Y, Guo Q, Ouyang Q B, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites [J]. Mater. Sci. Eng., 2015, A644: 79
[2] Xiao B L, Huang Z Z, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
[2] (肖伯律, 黄治治, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59)
[3] Li B, Luo B H, He K J ,et al. Effect of aging on interface characteristics of Al-Mg-Si/SiC composites [J]. J. Alloys Compd., 2015, 649: 495
[4] Monazzah A H, Pouraliakbar H, Bagheri R ,et al. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms [J]. Composites, 2017, 125B: 49
[5] Wang Z G, Li C P, Wang H Y, et al. Aging behavior of Nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Mater. Sci. Technol., 2016, 32: 1008
[6] Jin P, Xiao B L, Wang Q Z ,et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites [J]. Mater. Sci. Eng., 2011, A528: 1504
[7] Kalkanl? A, Y?lmaz S. Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates [J]. Mater. Des., 2008, 29: 775
[8] Sharma M M, Amateau M F, Eden T J. Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites [J]. Mater. Sci. Eng., 2006, A424: 87
[9] Min K H, Lee B H, Chang S Y ,et al. Mechanical properties of sintered 7xxx series Al/SiCp composites [J]. Mater. Lett., 2007, 61: 2544
[10] Dasgupta R, Meenai H. SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy [J]. Mater. Charact., 2005, 54: 438
[11] Kumar N V R, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCp composites [J]. Composites, 2000, 31A: 1139
[12] Manoharan M, Lewandowski J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite [J]. Mater. Sci. Eng., 1992, A150: 179
[13] Evans R D, Boyd J D. Near-interface microstructure in a SiC/Al composite [J]. Scr. Mater., 2003, 49: 59
[14] Hong S H, Chung K H. Effects of vacuum hot pressing parameters on the tensile properties and microstructures of SiC-2124 A1 composites [J]. Mater. Sci. Eng., 1995, A194: 165
[15] Cheng N P, Zeng S M, Wang S B ,et al. Effects of forming temperature on properties of SiCP/Al composite [J]. Hot Work. Technol., 2007, 32(2): 13
[15] (程南璞, 曾苏民, 王水兵等. 成形温度对SiCP/Al复合材料性能的影响 [J]. 热加工工艺, 2007, 32(2): 13)
[16] Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Mater. Chem. Phys., 2015, 154: 107
[17] Ma W C, Gu J L, Zhang Y ,et al. Effect of SiC particles on ageing behaviour of SiCp/7075 composites [J]. J. Mater. Sci. Lett., 1997, 16: 1867
[18] Lee K B, Kwon H. Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles [J]. Metall. Mater. Trans., 2002, 33A: 455
[19] Thébaud F, Hervé E, Da Silva R ,et al. The effect of the interfacial strength on the overall mechanical properties of particle reinforced metal matrix composites [A]. 2nd International Conference on Interfacial Phenomena in Composite Materials [C]. Louvain, Belgium, 1991: 179
[20] Man C F, Mummery P M, Derby B, et al. The influence of magnesium segregation on the fracture of silicon carbide particle-reinforced aluminium metal matrix composites [A]. 2nd International Conference on Interfacial Phenomena in Composite Materials [C]. Louvain, Belgium, 1991: 175
[21] Liu Z Y, Wang Q Z, Xiao B L ,et al. Effects of double extrusion on the microstructure and tensile property of the PM processed SiCp/2009Al composites [J]. Acta Metall. Sin., 2010, 46: 1121
[21] (刘振宇, 王全兆, 肖伯律等. 二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响 [J]. 金属学报, 2010, 46: 1121)
[22] Ogel B, Gurbuz R. Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders [J]. Mater. Sci. Eng., 2001, A301: 213
[23] Zhou J, Duszczyk J. Liquid phase sintering of an AA2014-based composite prepared from an elemental powder mixture [J]. J. Mater. Sci., 1999, 34: 545
[24] Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sin., 2012, 48: 135
[24] (张 琪, 王全兆, 肖伯律等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报, 2012, 48: 135)
[25] Li B, Pan Q L, Chen C P ,et al. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr [J]. J. Alloys Compd., 2016, 664: 553
[26] Wang D, Xiao B L, Wang Q Z ,et al. Evolution of the microstructure and strength in the nugget zone of friction stir welded SiCp/Al-Cu-Mg composite [J]. J. Mater. Sci. Technol., 2014, 30: 54
[27] Kiourtsidis G E, Skolianos S M, Litsardakis G A. Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites [J]. Mater. Sci. Eng., 2004, A382: 351
[28] Ure?a A, Mart??nez E E, Rodrigo P ,et al. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites [J]. Compos. Sci. Technol., 2004, 64: 1843
[29] McLeod A D, Gabryel C M. Kinetics of the growth of spinel, MgAl2O4, on alumina particulate in aluminum alloys containing magnesium [J]. Metall. Mater. Trans., 1992, 23A: 1279
[30] Strangwood M, Hippsley C A, Lewandowski J J. Segregation to SiC/Al interfaces in Al based metal matrix composites [J]. Scr. Metall. Mater., 1990, 24: 1483
[31] Shi Z L, Ochiai S, Hojo M ,et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite [J]. J. Mater. Sci., 2001, 36: 2441
[32] Jin P, Xiao B L, Wang Q Z ,et al. Effect of hot pressing temperature on microstructure and mechanical properties of SiC particle reinforced aluminum matrix composites [J]. Acta Metall. Sin., 2011, 47: 298
[32] (金 鹏, 肖伯律, 王全兆等. 热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响 [J]. 金属学报, 2011, 47: 298)
[33] Shin K, Chung D S, Lee S. The effect of consolidation temperature on microstructure and mechanical properties in powder metallurgy-processed 2XXX aluminum alloy composites reinforced with SiC particulates [J]. Metall. Mater. Trans., 1997, 28
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[3] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[4] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[5] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[6] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[7] Suigeng DU,Man GAO,Wanting XU,Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy[J]. 金属学报, 2019, 55(7): 885-892.
[8] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[9] Zhengyan ZHANG,Feng CHAI,Xiaobing LUO,Gang CHEN,Caifu YANG,Hang SU. The Strengthening Mechanism of Cu Bearing High Strength Steel As-Quenched and Tempered and Cu Precipitation Behavior in Steel[J]. 金属学报, 2019, 55(6): 783-791.
[10] Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites[J]. 金属学报, 2019, 55(6): 683-691.
[11] Juan DU, Xiaoxing CHENG, Tiannan YANG, Longqing CHEN, Frédéric Mompiou, Wenzheng ZHANG. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates[J]. 金属学报, 2019, 55(4): 511-520.
[12] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[13] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[14] ZHU Shang,LI Zhihui,YAN Lizhen,LI Xiwu,ZHANG Yongan,XIONG Baiqing. Effects of Zn Addition on the Natural Ageing Behavior and Bake Hardening Response of a Pre-Aged Al-Mg-Si-Cu Alloy[J]. 金属学报, 2019, 55(11): 1395-1406.
[15] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
No Suggested Reading articles found!