|
|
Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites |
Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA( ) |
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China |
|
Cite this article:
Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites. Acta Metall Sin, 2019, 55(6): 683-691.
|
Abstract In recent years, nanomaterials reinforced light metal matrix composites (LMMCs) have been researched widely, due to the enhancement in strength and ductility at room temperature, good wear resistance, excellent high temperature performance and structural-functional integration. However, there remain many challenges in developing high-performance nanomaterials reinforced LMMCs to date. The challenges mainly concentrate in the attainment of homogeneous dispersion or a controlled inhomogeneous microstructure of nanomaterials reinforcements, and the formation of the strong interfacial bonding. In the present review, therefore, current developments in fabrication, multi-scale hybrid reinforcement, novel architecture design and new processing method have been addressed. Moreover, further research interests related to the designs of nanomaterials reinforced LMMCs exhibiting high strength and plasticity, optimal architecture design and structural-functional integration have been proposed.
|
Received: 16 November 2018
|
|
Fund: National Key Research and Development Program of China(No.2016YFE0115300);National Natural Science Foundation of China(No.51625402) |
[1] | Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater. Sci. Eng., 2000, R29: 49 | [2] | Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281 | [3] | Watanabe Y, Inaguma Y, Sato H, et al. A Novel fabrication method for functionally graded materials under centrifugal force: The Centrifugal mixed-powder method [J]. Materials, 2009, 2: 2510 | [4] | Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Mater. Chem. Phys., 2015, 154: 107 | [5] | Wu H, Leng J F, Teng X Y, et al. Strain partitioning behavior of in situ Ti5Si3/TiAl composites [J]. J. Alloys Compd., 2018, 744: 182 | [6] | Fan G L, Huang H Y, Tan Z Q, et al. Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling [J]. Mater. Sci. Eng., 2017, A708: 537 | [7] | Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? [J]. Prog. Mater. Sci., 2015, 71: 93 | [8] | Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049 | [9] | Wang Z G, Li C P, Wang H Y, et al. Aging behavior of nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Mater. Sci. Technol., 2016, 32: 1008 | [10] | Wang Z G, Li C P, Wang H Y, et al. Effect of nano-SiC content on mechanical properties of SiC/2014Al composites fabricated by powder metallurgy combined with hot extrusion [J]. Powder Metall., 2016, 59: 236 | [11] | Mobasherpour I, Tofigh A A, Ebrahimi M. Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying [J]. Mater. Chem. Phys., 2013, 138: 535 | [12] | Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333 | [13] | Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying [J]. Composites, 2018, 111A: 1 | [14] | Yang Z F, Lu W J, Zhao L, et al. Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites [J]. J. Alloys Compd., 2008, 455: 210 | [15] | Yang Z F, Lu W J, Xu D, et al. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites [J]. J. Alloys Compd., 2006, 419: 76 | [16] | Liu B X, Huang L J, Geng L, et al. Fracture behaviors and microstructural failure mechanisms of laminated Ti-TiBw/Ti composites [J]. Mater. Sci. Eng., 2014, A611: 290 | [17] | Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077 | [18] | Huang L Q, Wang L H, Qian M, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires [J]. Scr. Mater., 2017, 141: 133 | [19] | Jiao Y, Huang L J, An Q, et al. Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture [J]. Mater. Sci. Eng., 2016, A673: 595 | [20] | Nampoothiri J, Harini R S, Nayak S K, et al. Post in-situ reaction ultrasonic treatment for generation of Al-4.4Cu/TiB2 nanocomposite: A route to enhance the strength of metal matrix nanocomposites [J]. J. Alloys Compd., 2016, 683: 370 | [21] | Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251 | [22] | Song M S, Zhang M X, Zhang S G, et al. In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting [J]. Mater. Sci. Eng., 2008, A473: 166 | [23] | Zhou D S, Qiu F, Jiang Q C. The nano-sized TiC particle reinforced Al-Cu matrix composite with superior tensile ductility [J]. Mater. Sci. Eng., 2015, A622: 189 | [24] | Wang H Y, Yu H C, Li C, et al. Morphology evolution of primary Mg2Si in Al-20Mg2Si-0.1Ca alloys prepared with various solidification cooling rates [J]. CrystEngComm, 2017, 19: 1680 | [25] | Wang H Y, Zhu J N, Li J H, et al. Refinement and modification of primary Mg2Si in an Al-20Mg2Si alloy by a combined addition of yttrium and antimony [J]. CrystEngComm, 2017, 19: 6365 | [26] | Razaghian A, Bahrami A, Emamy M. The influence of Li on the tensile properties of extruded in situ Al-15%Mg2Si composite [J]. Mater. Sci. Eng., 2012, A532: 346 | [27] | Bian L P, Liang W, Xie G Y, et al. Enhanced ductility in an Al-Mg2Si in situ composite processed by ECAP using a modified BC route [J]. Mater. Sci. Eng., 2011, A528: 3463 | [28] | Li Z D, Li C, Liu Y C, et al. Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy [J]. J. Alloys Compd., 2016, 663: 16 | [29] | Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1 | [29] | (赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1) | [30] | Gao X, Yue H Y, Guo E J, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites [J]. Mater. Des., 2016, 94: 54 | [31] | Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Exploring the reinforcing effect of TiC and CNT in dual-reinforced Al-matrix composites [J]. Diam. Relat. Mater., 2018, 89: 180 | [32] | Wang Y, Shen P, Guo R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration [J]. Ceram. Int., 2017, 43: 3831 | [33] | Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412 | [34] | Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites [J]. Compos. Struct., 2017, 163: 123 | [35] | Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. Roy. Soc. Interface, 2010, 7: 741 | [36] | Zhang H, Shen P, Shaga A, et al. Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template [J]. Mater. Lett., 2016, 183: 299 | [37] | Yang F, Kong F T, Chen Y Y, et al. Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite [J]. J. Alloys Compd., 2010, 496: 462 | [38] | Huang L J, Geng L, Wang B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with novel network microstructure [J]. Mater. Des., 2013, 45: 532 | [39] | Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618 | [39] | (王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618) | [40] | Jamian S, Watanabe Y, Sato H. Formation of compositional gradient in Al/SiC FGMs fabricated under huge centrifugal forces using solid-particle and mixed-powder methods [J]. Ceram. Int., 2019, 45: 9444 | [41] | Tammas-Williams S, Todd I. Design for additive manufacturing with site-specific properties in metals and alloys [J]. Scr. Mater., 2017, 135: 105 | [42] | Wong J C, Paramsothy M, Gupta M. Using Mg and Mg-nanoAl2O3 concentric alternating macro-ring material design to enhance the properties of magnesium [J]. Compos. Sci. Technol., 2009, 69: 438 | [43] | Feng S W, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars [J]. Acta Mater., 2017, 125: 98 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|