|
|
Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites |
Xuexi ZHANG1, Zhong ZHENG1, Ying GAO2, Lin GENG1( ) |
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Institute of Spacecraft System Engineering, Beijing 100086, China |
|
Cite this article:
Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites. Acta Metall Sin, 2019, 55(1): 109-125.
|
Abstract The "material genetic engineering" plan, based on the large data, is to investigate the high throughput design, fabrication and characterization techniques with the aim to shift the material research from traditional mode to high throughput mode with low cost and fast response speed, and to accelerate the research and development of new materials and achieve the goal of "double reduction halves". As the metal matrix composites (MMCs) exhibit multi-components and a thermodynamically non-equilibrium state during fabrication, some key issues occur and need to be addressed including: (1) for high throughput fabrication, currently developed high throughput technologies based on thermodynamically equilibrium conditions, such as spray printing and multi-node diffusion methods, are not applicable for MMCs; (2) for high throughput characterization, there is a lack of multi- dimensional, field and scale acquisition technique for the composition, morphology, microstructure and property of MMCs. In order to solve these problems, the progress on the research and development of high throughput fabrication and characterization techniques of MMCs was reviewed, especially, in the field of gradient reinforced MMCs and their high throughput combination characterization methods, which may promote the application of high throughput fabrication and characterization techniques in MMCs. Finally, the bottlenecks and prospects in the high throughput fabrication and characterization of MM Cs are proposed.
|
Received: 03 July 2018
|
|
Fund: Supported by National Key Research and Development Program of China (No.2017YFB0703103) |
[1] | Huang L J, Geng L, Peng H X.Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?[J]. Prog. Mater. Sci., 2015, 71: 93 | [2] | Hattrick-Simpers J, Wen C, Lauterbach J.The materials super highway: Integrating high-throughput experimentation into mapping the catalysis materials genome[J]. Catal. Lett., 2015, 145: 290 | [3] | Zhao J C.A perspective on the materials genome initiative[J]. Chin. J. Nat., 2014, 36: 89(赵继成. 材料基因组计划简介[J]. 自然杂志, 2014, 36: 89) | [4] | Mao S S.High throughput growth and characterization of thin film materials[J]. J. Cryst. Growth, 2013, 379: 123 | [5] | Jin Z W, Murakami M, Fukumura T, et al. Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films [J]. J. Cryst. Growth, 2000, 214-215: 55 | [6] | Zhao J C, Jackson M R, Peluso L A, et al.A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus[J]. JOM, 2002, 54(7): 42 | [7] | Zhao J C.High-throughput experimental tools for the Materials Genome Initiative[J]. Chin. Sci. Bull., 2014, 58: 3647(赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013, 58: 3647) | [8] | Wang X, Zhu L L, Fang J, et al.Applications of "Materials Genome Engineering" based methods in nickel-based superalloys[J]. Sci. Technol. Rev., 2015, 33(10): 79(王薪, 朱礼龙, 方姣等. 基于“材料基因组工程”的3种方法在镍基高温合金中的应用[J]. 科技导报, 2015, 33(10): 79) | [9] | Wang J S, Yoo Y, Gao C, et al.Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science, 1998, 279: 1712 | [10] | Chen L, Bao J, Gao C, et al.Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system[J]. J. Comb. Chem., 2004, 6: 699 | [11] | Liu X N, Shen Y, Yang R T, et al.Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration[J]. Nano Lett., 2012, 12: 5733 | [12] | Kang N, Coddet P, Wang J, et al.A novel approach to in-situ produce functionally graded silicon matrix composite materials by selective laser melting[J]. Compos. Struct., 2017, 172: 251 | [13] | Shishkovsky I V, Nazarov P A, Kotoban D V, et al.Comparison of Additive Technologies for Gradient Aerospace Part Fabrication from Nickel-based Superalloys[M]. London: InTech Publ., 2015: 221 | [14] | Nikoli? V, Wurster S, Savan A, et al.High-throughput study of binary thin film tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2017, 69: 40 | [15] | Huxtable S, Cahill D G, Fauconnier V, et al.Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials[J]. Nat. Mater., 2004, 3: 298 | [16] | Mccluskey P J, Zhao C W, Kfir O, et al.Precipitation and thermal fatigue in Ni-Ti-Zr shape memory alloy thin films by combinatorial nanocalorimetry[J]. Acta Mater., 2011, 59: 5116 | [17] | Kim H J, Han J H, Kaiser R, et al.High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams[J]. Rev. Sci. Instrum., 2008, 79: 045112 | [18] | Frick C P, Lang T W, Spark K, et al.Stress-induced martensitic transformations and shape memory at nanometer scales[J]. Acta Mater., 2006, 54: 2223 | [19] | Uchic M D, Dimiduk D M, Florando J N, et al.Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305: 986 | [20] | Vlassak J J, Nix W D.A New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films[J]. J. Mater. Res., 1992, 7: 3242 | [21] | Gregoire J M, McCluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[J]. Scr. Mater., 2012, 66: 178 | [22] | McCluskey P J, Vlassak J J. Combinatorial nanocalorimetry[J]. J. Mater. Res., 2010, 25: 2086 | [23] | Lee D, Sim G D, Xiao K C, et al.Scanning AC nanocalorimetry study of Zr/B reactive multilayers[J]. J. Appl. Phys., 2013, 114: 214902 | [24] | Zhang Y B, Fan G H.Three-dimensional X-ray diffraction technique for metals science[J]. Mater. Chin., 2017, 36: 181(张玉彬, 范国华. 三维X射线衍射技术在金属材料研究中的应用[J]. 中国材料进展, 2017, 36: 181) | [25] | Sáfrán G."One-sample concept" micro-combinatory for high throughput TEM of binary films[J]. Ultramicroscopy, 2018, 187: 50 | [26] | Tsai P, Flores K M.A combinatorial strategy for metallic glass design via laser deposition[J]. Intermetallics, 2014, 55: 162 | [27] | Tsai P, Flores K M.A laser deposition strategy for the efficient identification of glass-forming alloys[J]. Metall. Mater. Trans., 2015, 46A: 3876 | [28] | Tsai P, Flores K M.High-throughput discovery and characterization of multicomponent bulk metallic glass alloys[J]. Acta Mater., 2016, 120: 426 | [29] | Wu H, Fan G H, Huang M, et al.Deformation behavior of brittle/ductile multilayered composites under interface constraint effect[J]. Int. J. Plast., 2017, 89: 96 | [30] | Onraet S, Luff D, Geers M, et al.Measurement of strain fields in the micron range [A]. 3rd International Micro Materials Conference and Poster Exhibition[C]. Berlin: Druckhaus Dresden GmbH, 2000: 578 | [31] | Muster T H, Trinchi A, Markley T A, et al.A review of high throughput and combinatorial electrochemistry[J]. Electrochim. Acta, 2011, 56: 9679 | [32] | Hanak J J.The "Multiple-Sample Concept" in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems[J]. J. Mater. Sci., 1970, 5: 964 | [33] | Wang H Z, Wang H, Ding H, et al.Progress in high-throughput materials synthesis and characterization[J]. Sci. Technol. Rev., 2015, 33(10): 31)(王海舟, 汪洪, 丁洪等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31) | [34] | Potyrailo R, Rajan K, Stoewe K, et al.Combinatorial and high-throughput screening of materials libraries: Review of state of the art[J]. ACS Comb. Sci., 2011, 13: 579 | [35] | Yoo Y K, Xue Q Z, Chu Y S, et al.Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips[J]. Intermetallics, 2006, 14: 241 | [36] | Takeuchi I, Chang K, Sharma R P, et al.Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method[J]. J. Appl. Phys., 2001, 90: 2474 | [37] | Wang N, Zhang X, Chen B, et al.Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source[J]. Lab Chip, 2012, 12: 3983 | [38] | Bergh S, Guan S H, Hagemeyer A, et al.Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system[J]. Appl. Catal., 2003, 254A: 67 | [39] | Guram A, Hagemeyer A, Lugmair C G, et al.Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis[J]. Adv. Synth. Catal., 2004, 346: 215 | [40] | Yan Z K, Zhang X K, Li G, et al.High-throughput combinatorial chemical bath deposition: The case of doping Cu(In, Ga)Se film with antimony[J]. Appl. Surf. Sci., 2018, 427: 1235 | [41] | Mao S S, Zhang X J.High-throughput multi-plume pulsed-laser deposition for materials exploration and optimization[J]. Engineering, 2015, 1: 367 | [42] | Fan H W, Shan L L, Meng H, et al.High-throughput production of nanodisperse hybrid membranes on various substrates[J]. J. Membr. Sci., 2018, 552: 177 | [43] | Wu H Y, Li J, Liu F, et al.A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy[J]. Mater. Des., 2017, 128: 176 | [44] | Goll D, Loeffler R, Hohs D, et al.Reaction sintering as a high-throughput approach for magnetic materials development[J]. Scr. Mater., 2018, 146: 355 | [45] | Ivanov R, Deschamps A, De Geuser F.High throughput evaluation of the effect of Mg concentration on natural ageing of Al-Cu-Li-(Mg) alloys[J]. Scr. Mater., 2018, 150: 156 | [46] | Chikyow T, Ahmet P, Nakajima K, et al.A combinatorial approach in oxide/semiconductor interface research for future electronic devices[J]. Appl. Surf. Sci., 2002, 189: 284 | [47] | Baufeld B, Van Der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties[J]. Mater. Des., 2010, 31(suppl.1): S106 | [48] | Schwendner K I, Banerjee R, Collins P C, et al.Direct laser deposition of alloys from elemental powder blends[J]. Scr. Mater., 2001, 45: 1123 | [49] | Arnold C B, Serra P, Piqué A.Laser direct-write techniques for printing of complex materials[J]. MRS Bull., 2007, 32: 23 | [50] | Nian Q, Wang Y, Yang Y, et al.Direct laser writing of nanodiamond films from graphite under ambient conditions[J]. Sci. Rep., 2015, 4: 6612 | [51] | Zygmuntowicz J, Wiecińska P, Miazga A, et al.Al2O3/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting method[J]. J. Therm. Anal. Calorim., 2017, 130: 123 | [52] | Solarek J, Aneziris C G, Biermann H.A new method for manufacturing graded refractories by localized hot uniaxial pressing[J]. Ceram. Int., 2017, 43: 14636 | [53] | Avci U, Temiz ?.A new approach to the production of partially graded and laminated composite material composed of SiC-reinforced 7039 Al alloy plates at different rates[J]. Composites, 2017, 131B: 76 | [54] | Cai Y Z, Cheng L F, Yin H F, et al.Preparation and mechanical properties of Ti3SiC2/SiC functionally graded materials[J]. Ceram. Int., 2017, 43: 6648 | [55] | Shishkovsky I, Kakovkina N, Sherbakov V.Graded layered titanium composite structures with TiB2 inclusions fabricated by selective laser melting[J]. Compos. Struct., 2017, 169: 90 | [56] | Uchic M D, Dimiduk D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing [J]. Mater. Sci. Eng., 2005, A400-401: 268 | [57] | Guo X L, Guo Q, Li Z Q, et al.Size and crystallographic orientation effects on the mechanical behavior of 4H-SiC micro-/nano-pillars[J]. Metall. Mater. Trans., 2018, 49A: 439 | [58] | Deng C F, Zhang X X, Wang D Z.Chemical stability of carbon nanotubes in the 2024Al matrix[J]. Mater. Lett., 2007, 61: 904 | [59] | Li J C, Zhang X X, Geng L.Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing[J]. Mater. Des., 2018, 144: 159 | [60] | Huang L J, Geng L, Fu Y, et al.Oxidation behavior of in situ TiCp/Ti6Al4V composite with self-assembled network microstructure fabricated by reaction hot pressing[J]. Corros. Sci., 2013, 69: 175 | [61] | Huang L J, Wang S, Geng L, et al.Low volume fraction in situ (Ti5Si3+Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti-SiC system[J]. Compos. Sci. Technol., 2013, 82: 23 | [62] | Huang M, Xu C, Fan G H, et al.Role of layered structure in ductility improvement of layered Ti-Al metal composite[J]. Acta Mater., 2018, 153: 235 | [63] | Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697 | [64] | Collins F S, Morgan M, Patrinos A.The human genome project: Lessons from large-scale biology[J]. Science, 2003, 300: 286 | [65] | Isaacs E D, Marcus M, Aeppli G, et al.Synchrotron X-ray microbeam diagnostics of combinatorial synthesis[J]. Appl. Phys. Lett., 1998, 73: 1820 | [66] | Picos-Vega A, Ramírez-Bon R, Espinoza-Beltrán F J, et al. Physical properties of CdTe-Sb thin films [J]. Thin Solid Films, 1996, 290-291: 395 | [67] | Jiang R Z, Chu D.A combinatorial approach toward electrochemical analysis[J]. J. Electroanal. Chem., 2002, 527: 137 | [68] | Mardare A I, Yadav A P, Wieck A D, et al.Combinatorial electrochemistry on Al-Fe alloys[J]. Sci. Technol. Adv. Mater., 2016, 9: 035009 | [69] | Hassel A W, Lohrengel M M.The scanning droplet cell and its application to structured nanometer oxide films on aluminium[J]. Electrochim. Acta, 1997, 42: 3327 | [70] | Vegas A J, Anderson D G.High-throughput approaches[J]. Polym. Sci., 2012, 9A: 457 | [71] | Urquhart A J, Anderson D G, Taylor M, et al.High throughput surface characterisation of a combinatorial material library[J]. Adv. Mater., 2007, 19: 2486 | [72] | Orikasa Y, Maeda T, Koyama Y, et al.Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. J. Am. Chem. Soc., 2013, 135: 5497 | [73] | Zhou Y N, Yue J L, Hu E Y, et al.High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6: 1600597 | [74] | Lyu Y, Liu Y L, Cheng T, et al.High-throughput characterization methods for lithium batteries[J]. J. Mater., 2017, 3: 221 | [75] | Meirer F, Cabana J, Liu Y, et al.Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy[J]. J. Synchrotron Radiat., 2011, 18: 773 | [76] | Li S Y, Beyerlein I J, Alexander D J, et al.Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling[J]. Acta Mater., 2005, 53: 2111 | [77] | Pouillerie C, Suard E, Delmas C.Structural characterization of Li1-z-xNi1+zO2 by neutron diffraction[J]. J. Solid State Chem., 2001, 158: 187 | [78] | Thibault D, Bocher P, Thomas M, et al.Residual stress characterization in low transformation temperature 13%Cr-4%Ni stainless steel weld by neutron diffraction and the contour method[J]. Mater. Sci. Eng., 2010, A527: 6205 | [79] | Wei T, Xiang X D, Wallace-Freedman W G, et al. Scanning tip microwave near-field microscope[J]. Appl. Phys. Lett., 1996, 68: 3506 | [80] | Gao C, Duewer F, Xiang X D.Quantitative microwave evanescent microscopy[J]. Appl. Phys. Lett., 1999, 75: 3005 | [81] | Oguchi H, Heilweil E J, Josell D, et al.Infrared emission imaging as a tool for characterization of hydrogen storage materials[J]. J. Alloys Compd., 2009, 477: 8 | [82] | Weiss P A W, Thome C, Maier W F. MS-Express: Data-extracting and -processing software for high-throughput experimentation with mass spectrometry[J]. J. Comb. Chem., 2004, 6: 520 | [83] | Hoffmann C, Schmidt H W, Schüth F.A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction[J]. J. Catal., 2001, 198: 348 | [84] | Sottmann J, Homs-Regojo R, Wragg D S, et al.Versatile electrochemical cell for Li/Na-ion batteries and high-throughput setup for combined operando X-ray diffraction and absorption spectroscopy[J]. J Appl. Crystallogr., 2016, 49: 1972 | [85] | Zhang X K, Xiang Y.Combinatorial approaches for high-throughput characterization of mechanical properties[J]. J. Mater., 2017, 3: 209 | [86] | Shapiro M J, Gounarides J S.NMR methods utilized in combinatorial chemistry research[J]. Prog. Nucl. Magn. Reson. Spectrosc., 1999, 35: 153 | [87] | Blümich B, Casanova F, Appelt S.NMR at low magnetic fields[J]. Chem. Phys. Lett., 2009, 477: 231 | [88] | Johann T, Brenner A, Schwickardi M, et al.Listening to catalysis—A real time parallel method for high throughput product analysis[J]. Catal. Today, 2003, 81: 449 | [89] | Meersschaut J, Vandervorst W.High-throughput ion beam analysis at imec[J]. Nucl. Instrum. Meth. Phys. Res., 2017, 406B: 25 | [90] | Rudneva M, Kozlova T, Zandbergen H W.New possibilities for in-situ electrical characterization of nanosamples at different temperatures combined with simultaneous TEM observations[J]. Microsc. Microanal., 2013, 19(suppl.2): 456 | [91] | Levine L E, Larson B C, Yang W G, et al.X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper[J]. Nat. Mater., 2006, 5: 619 | [92] | Nix W D, Gao H J.Indentation size effects in crystalline materials: A law for strain gradient plasticity[J]. J. Mech. Phys. Solids, 1998, 46: 411 | [93] | Hutchinson J W.Plasticity at the micron scale[J]. Int. J. Solids Struct., 2000, 37: 225 | [94] | Tymiak N I, Kramer D E, Bahr D F, et al.Plastic strain and strain gradients at very small indentation depths[J]. Acta Mater., 2001, 49: 1021 | [95] | Su H, Yeung E S.High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging[J]. J. Am. Chem. Soc., 2000, 122: 7422 | [96] | Vogt S, Chu Y S, Tkachuk A, et al.Composition characterization of combinatorial materials by scanning X-ray fluorescence microscopy using microfocused synchrotron X-ray beam[J]. Appl. Surf. Sci., 2004, 223: 214 | [97] | Linke S, Kühn J, N?rthemann K, et al.Sensor high throughput screening using photocurrent measurements in silicon[J]. Proc. Eng., 2012, 47: 1195 | [98] | Chen Y H, Yuan L J, Wang H Z.Investigation on original statistic distribution analysis of flat-bulb steel by laser ablation inductively coupled plasma mass spectrometry[J]. Metall. Anal., 2008, 29(9): 1(陈玉红, 袁良经, 王海舟. 球扁钢的激光剥蚀-电感耦合等离子体质谱原位统计分布分析研究[J]. 冶金分析, 2008, 29(9): 1) | [99] | Wang H Z.In situ statistical distribution analysis—A new technique for materials research and quality criterion[J]. Sci. China, 2002, 32B: 481(王海舟. 原位统计分布分析——材料研究及质量判据的新技术[J]. 中国科学, 2002, 32B: 481) | [100] | Li D L, Wang H Z.Original Position statistic distribution analysis for the sulfides in gear steels[J]. ISIJ Int., 2014, 54: 160 | [101] | Luo Q H, Li D L, Ma F C, et al.Original position statistic distribution analysis for inclusion of cross-section of stainless steel continuous casting slab[J]. Metall. Anal., 2013, 33(12): 1(罗倩华, 李冬玲, 马飞超 等. 不锈钢连铸板坯横截面夹杂物的原位统计分布分析 [J]. 冶金分析, 2013, 33(12): 1) | [102] | Huang X X, Wu G L, Zhong X Y, et al.Multi-scale and multi-dimensional characterization techniques for advanced materials[J]. J. Chin. Electr. Microsc. Soc., 2016, 35: 567(黄晓旭, 吴桂林, 钟虓 等. 先进材料多维多尺度高通量表征技术[J]. 电子显微学报, 2016, 35: 567) | [103] | Gao C, Xiang X D.Quantitative microwave near-field microscopy of dielectric properties[J]. Rev. Sci. Instrum., 1998, 69: 3846 | [104] | Ohtani M, Lippmaa M, Ohnishi T, et al.High throughput oxide lattice engineering by parallel laser molecular-beam epitaxy and concurrent X-ray diffraction[J]. Rev. Sci. Instrum., 2005, 76: 062218 | [105] | Nam K W, Bak S M, Hu E Y, et al.Cathode Materials: Combining in situ synchrotron X-Ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2013, 23: 1046 | [106] | Zheng X, Cahill D G, Weaver R, et al.Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection[J]. J. Appl. Phys., 2008, 104: 0735097 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|