Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (8): 1048-1056    DOI: 10.11900/0412.1961.2020.00360
Research paper Current Issue | Archive | Adv Search |
Microstructure and Tribological Properties of WC-Ni Matrix Cermet Coatings Prepared by Electrospark Deposition on H13 Steel Substrate
WANG Wenquan, DU Ming, ZHANG Xinge(), GENG Mingzhang
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China
Cite this article: 

WANG Wenquan, DU Ming, ZHANG Xinge, GENG Mingzhang. Microstructure and Tribological Properties of WC-Ni Matrix Cermet Coatings Prepared by Electrospark Deposition on H13 Steel Substrate. Acta Metall Sin, 2021, 57(8): 1048-1056.

Download:  HTML  PDF(14483KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

H13 steel is one of the most promising materials for molds owing to its outstanding hardenability, high toughness, and thermal cracking resistance. To reinforce the surface performance and extend service life of H13 steel, a WC-Ni matrix cermet composite coating with a Ni or Mo transition layer was prepared by electrospark deposition on an H13 steel substrate. The phase compositions, microstructure, microhardness, and tribological properties of the coating were investigated in detail. The surface of the WC-Ni coating contained accumulated sputtered deposition spots. The cross section of WC-Ni coating is composed of a coating, a transition layer, and a substrate with a clear boundary; the WC hard phases are dispersed in the coating. The Ni/WC-Ni composite coating surface is relatively smooth and flat, and its phase composition is consistent with that of the WC-Ni coating. The WC hard phases show abnormal growth at the interface. The surface of a Mo/WC-Ni composite coating exhibits microcracks and indicates the formation of a new Fe9.7Mo0.3 phase. Hardness values of the composite coatings are greater than that of the WC-Ni coating, and their friction coefficient and wear loss are lower than that of the H13 steel substrate and WC-Ni coating. In addition, the antiabrasive performance of the Mo/WC-Ni composite coating is better than that of the Ni/WC-Ni composite coating.

Key words:  electrospark deposition      WC-Ni matrix cermet coating      composite coating      microstructure      tribological property     
Received:  09 September 2020     
ZTFLH:  TG174.44  
Fund: Fundamental Research Funds for the Central Universities(45120031B004);Co-Construction Project of Jilin University and Jilin Province(440050316A14)
About author:  ZHANG Xinge, associate professor, Tel: (0431)85094687, E-mail: zhangxinge@jlu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00360     OR     https://www.ams.org.cn/EN/Y2021/V57/I8/1048

Fig.1  Schematic of electrospark deposition process
Fig.2  XRD spectra of WC-Ni matrix cermet coating (a), Mo/WC-Ni composite coating (b), and Ni/WC-Ni composite coating (c) prepared by electrospark deposition
Fig.3  Surface SEM images of WC-Ni matrix cermet coating (a, b), Mo/WC-Ni composite coating (c), and Ni/WC-Ni composite coating (d) prepared by electrospark deposition
Fig.4  Cross-sectional SEM image (a) and EDS line scanning results (b) of WC-Ni matrix cermet coating prepared by electrospark deposition, and particle size distribution of ceramic phase (c)
Fig.5  Cross-sectional SEM images (a, c) and EDS line scanning results (b, d) of Ni/WC-Ni composite coating (a, b) and Mo/WC-Ni composite coating (c, d) prepared by electrospark deposition
Fig.6  Microhardness distributions of WC-Ni matrix cermet coating, Mo/WC-Ni composite coating, and Ni/WC-Ni composite coating prepared by electrospark deposition
Fig.7  Friction coefficient curves of H13 steel substrate, WC-Ni matrix cermet coating, Mo/WC-Ni composite coating, and Ni/WC-Ni composite coating at room temperature under loadings of 5 and 8 N
Fig.8  Wear weight losses of H13 steel substrate, WC-Ni matrix cermet coating, Mo/WC-Ni composite coating, and Ni/WC-Ni composite coating under loadings of 5 and 8 N
Fig.9  Wear morphologies of H13 steel substrate (a), WC-Ni matrix cermet coating (b), Ni/WC-Ni composite coating (c), and Mo/WC-Ni composite coating (d)
AreaWFeNiOCrMo
A82.291.6711.502.140.25-
B75.8614.784.500.721.161.17
Table 1  EDS results of the square areas marked in Fig.9
1 Zhao X Y. Research on metal based ceramic composite coatings and the wear resistance prepared by laser cladding on H13 die steel [D]. Guangzhou: Jinan University, 2016
赵雪阳. H13钢表面激光熔覆制备金属基陶瓷复合涂层及其耐磨性的研究 [D]. 广州: 暨南大学, 2016
2 Liao F. PN + PECVD duplex treatment on the surface of H13 steel: Preparation and mechanical properties [D]. Guangzhou: South China University of Technology, 2012
廖 芳. H13钢表面PN + PECVD复合处理工艺及性能的研究 [D]. 广州: 华南理工大学, 2012
3 Cen S B, Chen H, Liu Y, et al. Effect of CeO2 on corrosion behavior of WC-12Co coatings by high velocity oxygen fuel [J]. Acta Metall. Sin., 2016, 52: 1441
岑升波, 陈 辉, 刘 艳等. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响 [J]. 金属学报, 2016, 52: 1441
4 Xue P. Study on modification of WC-10Ni cemented carbide [D]. Nanchang: Nanchang Hangkong University, 2017
薛 萍. WC-10Ni硬质合金的改性研究 [D]. 南昌: 南昌航空大学, 2017
5 Chen H Y, Wang Z C, Luo L M, et al. Effect of Ni content on microstructure and properties of WC-Ni composites prepared by electroless plating and powder metallurgy [J]. Rare Met. Mater. Eng., 2017, 46: 2820
6 Wada K, Yagi T, Gotou H, et al. Development of new WC-Ni hardmetals for use in high pressure experiments [J]. High Pressure Res., 2015, 35: 263
7 Chen Q Y, Fu W, Du D M, et al. Comparison of microstructure and properties of WC-Ni coating by atmospheric plasma spraying and high velocity oxygen-fuel spraying [J]. Rare Met. Mater. Eng., 2019, 48: 3680
陈清宇, 富 伟, 杜大明等. 大气等离子喷涂和超音速火焰喷涂WC-Ni涂层组织结构和性能的对比 [J]. 稀有金属材料与工程, 2019, 48: 3680
8 Zhang X Y. A study of microstructure and interface of WC-Ni by flame spraying [D]. Dalian: Dalian University of Technology, 2016
张翔宇. 火焰喷涂WC-Ni涂层组织与界面研究 [D]. 大连: 大连理工大学, 2016
9 Yang J X, Zhang J Q, Chang W Q, et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating [J]. J. Mater. Eng., 2016, 44(6): 110
杨胶溪, 张健全, 常万庆等. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能 [J]. 材料工程, 2016, 44(6): 110
10 Zhao W, Zhang K, Liu P, et al. Study on microstructure and properties of laser cladding Ni-based WC composite coating [J]. J. Funct. Mater., 2019, 50: 01098
赵 伟, 张 柯, 刘 平等. 激光熔覆Ni基WC复合熔覆层组织与性能的研究 [J]. 功能材料, 2019, 50: 01098
11 Tehrani H M, Shoja-Razavi R, Erfanmanesh M, et al. Evaluation of the mechanical properties of WC-Ni composite coating on an AISI 321 steel substrate [J]. Opt. Laser Technol., 2020, 127: 106138
12 Wu Z W, Chen J, Piao N, et al. Synthesis and passive property of nanocomposite Ni-WC coating [J]. Acta Metall. Sin., 2013, 49: 1185
武占文, 陈 吉, 朴 楠等. Ni-WC纳米复合镀层的制备及钝化性能研究 [J]. 金属学报, 2013, 49: 1185
13 Johnson R N, Sheldon G L. Advances in the electrospark deposition coating process [J]. J. Vac. Sci. Technol., 1986, 4A: 2740
14 Wei X, Chen Z G, Zhong J, et al. Feasibility of preparing Mo2FeB2-based cermet coating by electrospark deposition on high speed steel [J]. Surf. Coat. Technol., 2016, 296: 58
15 Salmaliyan M, Malek G F, Ebrahimnia M. Effect of electro spark deposition process parameters on WC-Co coating on H13 steel [J]. Surf. Coat. Technol., 2017, 321: 81
16 Burkov A A. Wear resistance of electrospark WC-Cо coatings with different iron contents [J]. J. Frict. Wear, 2016, 37: 385
17 Burkov A A, Pyachin S A. Formation of WC-Co coating by a novel technique of electrospark granules deposition [J]. Mater. Des., 2015, 80: 109
18 Suzuki H, Yamamoto T. Effects of carbon content on some properties of WC-10%(Co-Ni) cemented carbides [J]. J. Jpn. Soc. Powder Powder Metall., 1968, 15: 68
19 Chen D Y, Luo Z Q. The characteristics development and application of WC-Ni cemented carbide [J]. Cement. Carb., 2007, 24: 43
陈德勇, 罗在清. WC-Ni硬质合金的特性、发展及其应用 [J]. 硬质合金, 2007, 24: 43
20 Zhang Y, Chen Z G, Wei X, et al. Microstructure and properties of chromium carbide based metal-ceramic coatings prepared by electro-spark deposition [J]. Rare Met. Mater. Eng., 2019, 48: 601
张 怡, 陈志国, 魏 祥等. 电火花沉积碳化铬基金属陶瓷涂层的微观组织与性能 [J]. 稀有金属材料与工程, 2019, 48: 601
21 Li Q. Study on preparation of novel core/shell structured WC-Ni cemented carbides and properties [D]. Nanchang: Nanchang Hangkong University, 2015
李 强. 新型核壳结构WC-Ni硬质合金的制备及性能研究 [D]. 南昌: 南昌航空大学, 2015
22 Yang X T, Li X Q, Yang Q B, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings [J]. Surf. Coat. Technol., 2020, 385: 125359
23 Wang R J, Qian Y Y, Liu J. Interface behavior study of WC92-Co8 coating produced by electrospark deposition [J]. Appl. Surf. Sci., 2005, 240: 42
24 Guo C, Chen J M, Zhou J S, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating [J]. Surf. Coat. Technol., 2012, 206: 2064
25 Yang G R, Song W M, Li J, et al. Wear behavior of Ni/WC surface-infiltrated composite coating on copper substrate [J]. Int. J. Mater. Res., 2016, 107: 88
26 Wen S Z, Huang P. Principles of Tribology [M]. 2nd Ed., Beijing: Tsinghua University Press, 2002: 283
温诗铸, 黄 平. 摩擦学原理 [M]. 第2版, 北京: 清华大学出版社, 2002: 283
27 Xu J S, Zhang X C, Xuan F Z, et al. Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle [J]. J. Mater. Eng. Perform., 2012, 21: 1904
28 Bao C G, Gao Y M, Xing J D, et al. Wear behavior of plasma sprayed Ni-WC composite coatings [J]. Key Eng. Mater., 2007, 336-338: 1731
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!