Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (5): 641-650    DOI: 10.11900/0412.1961.2020.00264
Research paper Current Issue | Archive | Adv Search |
Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion
CHEN Jianjun1, DING Yutian1(), WANG Kun2, YAN Kang1, MA Yuanjun1, WANG Xingmao1, ZHOU Shengming3
1.State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.The 404 Company Limited, China National Nuclear Industry Corporation, Jiayuguan 735100, China
3.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Company Limited, Jinchang 737100, China
Cite this article: 

CHEN Jianjun, DING Yutian, WANG Kun, YAN Kang, MA Yuanjun, WANG Xingmao, ZHOU Shengming. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion. Acta Metall Sin, 2021, 57(5): 641-650.

Download:  HTML  PDF(30390KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH3625 superalloy is a type of solid-solution strengthened nickel-based wrought superalloy having Mo and Nb as the main strengthening elements. Because of its excellent high-temperature mechanical properties and oxidation resistance below 650 oC, it can be used in harsh stress and atmosphere environments. It is mainly used as a pipe material for aeroengine fuel main pipe, nuclear power steam generator heat transfer pipe, and pressure pipe, etc. Owing to the high alloying degree of nickel-based superalloys, large deformation resistance, and narrow thermal processing temperature range, the pipe preparation process is complicated. In this study, the as-cast and homogenized pipe billets were used for a short-flow hot extrusion pipe preparation test using the same process. The homogenized pipe billet was extruded successfully, and the pipe burst occurred during the extrusion of the as-cast billet. The pipe burst behavior was studied by OM, SEM, and EBSD, with an EDS analysis. The results showed a considerable amount of Laves phases in the as-cast pipe billet, and the Laves phases and micro-segregation were essentially eliminated after homogenization. Adiabatic heating of the as-cast pipe billet leads to the Laves phase remelting during the hot extrusion process, which is the main reason for pipe bursting during a hot extrusion process. The cracking mode of the pipe burst is a quasi-cleavage fracture, combining brittle fracture and ductile fracture with the predominance of the brittle fracture.

Key words:  GH3625 superalloy      hot extruded pipe      microstructure      Laves phase      pipe burst     
Received:  17 July 2020     
ZTFLH:  TG379  
Fund: National Key Research and Development Program of China(2017YFA0700703);National Natural Science Foundation of China(51661019);Program for Major Projects of Science and Technology in Gansu Province(145RTSA004);Program for State Key Laboratory Nickel and Cobalt Resources Comprehensive Utilization(301170503);Program for Hongliu First-Class Discipline Construction Plan of Lanzhou University of Technology
About author:  DING Yutian, professor, Tel: (0931)2976688, E-mail: dingyt@lut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00264     OR     https://www.ams.org.cn/EN/Y2021/V57/I5/641

Fig.1  Flow chart of hot extrusion experiment for the GH3625 superalloy pipe
Fig.2  OM (a [ 25], c [ 8]) and SEM (b, d) images of as-cast (a, b) and as-homogenized (c, d) GH3625 superalloy billets
Fig.3  Cross section (a) and longitudinal section (b) EBSD images of successfully hot extruded pipe of GH3625 superalloy (The black, grey, and red lines in Figs.3a and b represent high angle grain boundaries, low angle grain boundaries, and twin boundaries, respectively), and OM images of burst pipe at outer wall (c), near the central fracture (d), and at inner wall (e)
Fig.4  SEM images and EDS analyses of strip structures of GH3625 superalloy
Fig.5  SEM image and EDS map scan of strip structure in square area of Fig.4c
Fig.6  SEM images of cracks in GH3625 superalloy burst pipe (a-c), and EDS analysis result along line across the crack showed in insert SEM image (d)
Fig.7  SEM image and EDS map scan of crack terminal in square area of Fig.6c
Fig.8  SEM fractographs of the GH3625 superalloy burst pipe
1 Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 1
郭建亭. 高温合金材料学 (上册) [M]. 北京: 科学出版社, 2008: 1
2 Shi C X, Zhong Z Y. Fifty Years Development of Superalloy in China [M]. Beijing: Metallurgical Industry Press, 2006: 1
师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 1
3 Gao Y B, Ding Y T, Chen J J, et al. Evolution of microstructure and texture during cold deformation of hot-extruded GH3625 alloy [J]. Acta Metall. Sin., 2019, 55: 547
高钰璧, 丁雨田, 陈建军等. 挤压态GH3625合金冷变形过程中的组织和织构演变 [J]. 金属学报, 2019, 55: 547
4 Dang L, Yang H, Guo L G, et al. DRX rules during extrusion process of large-scale thick-walled Inconel 625 pipe by FE method [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3037
5 Tian D. Development and production of high-temperature alloy seamless tubulars [J]. Steel Pipe, 2002, 31( 3): 1
田 党. 高温合金无缝管材的研制与生产 [J]. 钢管, 2002, 31( 3): 1
6 Zou Z H. Development of domestic manufacturing technologies for stainless steel tubes and gap with similar technologies developed overseas [J]. Steel Pipe, 2000, 29( 6): 7
邹子和. 我国不锈钢管生产技术的进展及其与国外的差距 [J]. 钢管, 2000, 29( 6): 7
7 Li D F, Wu Z G, Guo S L, et al. Study on the processing map of GH625 Ni-based alloy deformed at high temperature [J]. Rare Met. Mater. Eng., 2012, 41: 1026
李德富, 吾志岗, 郭胜利等. GH625镍基合金高温塑性变形加工图研究 [J]. 稀有金属材料与工程, 2012, 41: 1026
8 Ding Y T, Chen J J, Li H F, et al. Study on processing map of homogenized GH3625 superalloy and its tube manufacturing by short-flow hot extrusion [J]. Mater. Rev., 2019, 33: 2753
丁雨田, 陈建军, 李海峰等. 均匀化态GH3625合金热加工图及短流程热挤压管材研究 [J]. 材料导报, 2019, 33: 2753
9 Wei J X, Su C L, He Y H. The research on hot extruding temperature of GH3625 alloy tube billet [J]. Spec. Steel Technol., 2015, 21( 2): 38
韦家向, 苏承龙, 何云华. GH3625合金管坯热挤压温度研究 [J]. 特钢技术, 2015, 21( 2): 38
10 Ding Y T, Liu D X, Hu Y, et al. A short-flow hot extrusion process for forming Inconel 625 superalloy pipe [P]. Chin Pat, 201510899976.1, 2015
丁雨田, 刘德学, 胡 勇等. 短流程热挤压变形高温合金Inconel 625管材方法 [P]. 中国专利, 201510899976.1, 2015))
11 Liu D X, Cheng X W, Zhang X, et al. Effects of heating and hot extrusion process on microstructure and properties of Inconel 625 alloy [J]. J. Wuhan Univ. Technol., 2016, 31: 1368
12 Dong J X. Extrusion and Microstructure Control of Nickel based Alloy Tubes [M]. Beijing: Metallurgical Industry Press, 2014: 1
董建新. 镍基合金管材挤压及组织控制 [M]. 北京: 冶金工业出版社, 2014: 1
13 Wang B S, Shao Y, Su C. Investigation on cracks in 825 alloy pipe during hot extrusion process [J]. Hot Work. Technol., 2013, 42( 15): 127
王宝顺, 邵 羽, 苏 诚. 825合金热挤压管裂纹研究 [J]. 热加工工艺, 2013, 42( 15): 127
14 Gao Y G, Sun H G, Pang Y S, et al. Investigation of hot extrusion-caused cracking of Inconel 718 seamless steel tube and related control measures [J]. Steel Pipe, 2017, 46( 6): 44
高玉光, 孙海刚, 庞于思等. Inconel 718无缝钢管热挤压开裂原因分析和控制 [J]. 钢管, 2017, 46( 6): 44
15 Peng H J. Study on hot deformation behaviors and hot tube extrusion mechanism of GH690 alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
彭海健. GH690合金热变形行为及管材热挤压机理研究 [D]. 北京: 北京有色金属研究总院, 2014
16 Wang B. High speed hot tube extrution process of Inconel690 superalloy [J]. Rare Met. Mater. Eng., 2014, 43( ): 137
王 彬. Inconel690合金管高速热挤压成形工艺研究 [J]. 稀有金属材料与工程, 2014, 43( ): 137
17 Jiang H, Yang L, Dong J X, et al. The recrystallization model and microstructure prediction of alloy 690 during hot deformation [J]. Mater. Des., 2016, 104: 162
18 Godasu A K, Prakash U, Mula S. Flow stress characteristics and microstructural evolution of cast superalloy 625 during hot deformation [J]. J. Alloys Compd., 2020, 844: 156200
19 Guo S L, Li D F, Guo Q M, et al. Investigation on hot workability characteristics of Inconel 625 superalloy using processing maps [J]. J. Mater. Sci., 2012, 47: 5867
20 Wang Y, Wang J S, Dong J S, et al. Hot deformation characteristics and hot working window of as-cast large-tonnage GH3535 superalloy ingot [J]. J. Mater. Sci. Technol., 2018, 34: 2439
21 Lypchanskyi O, Śleboda T, Zygula K, et al. Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps [J]. Materials, 2020, 13: 3629
22 Yao Z H, Dong J X, Zhang M C, et al. Hot deformation behaviour of superalloy GH738 [J]. Rare Met. Mater. Eng., 2013, 42: 1199
姚志浩, 董建新, 张麦仓等. GH738高温合金热加工行为 [J]. 稀有金属材料与工程, 2013, 42: 1199
23 Ding Y T, Gao X, Dou Z Y, et al. Numerical simulation of hot extrusion process of GH3625 alloy tubes [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 1121
丁雨田, 高 鑫, 豆正义等. GH3625合金管材热挤压过程的数值模拟 [J]. 特种铸造及有色合金, 2016, 36: 1121
24 Ding Y T, Wang K, Gao Y B, et al. Microstructure and crack forming mechanism of GH3625 alloy tube by hot extruded forming process [J]. Rare Met. Mater. Eng., 2020, 49: 1743
丁雨田, 王 琨, 高钰璧等. 热挤压成形GH3625合金管材组织及裂纹形成机理 [J]. 稀有金属材料与工程, 2020, 49: 1743
25 Ding Y T, Li H F, Wang W, et al. Microsegregation and homogenization of GH3625 alloy ingot [J]. Mater. Sci. Technol., 2016, 24( 6): 14
丁雨田, 李海峰, 王 伟等. 铸锭GH3625合金微观偏析及均匀化热处理 [J]. 材料科学与工艺, 2016, 24( 6): 14
26 Schirra J J, Caless R H, Hatala R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Warrendale, PA: The Minerals, Metals & Materials Society, 1991: 375
27 Deng Q, Du J H, Zhuang J Y, et al. As-cast microstructure and segregation improvement of alloy GH742y [J]. J. Iron Steel Res., 2007, 19( 5): 89
邓 群, 杜金辉, 庄景云等. GH742y合金的铸态组织及铸态偏析的改善 [J]. 钢铁研究学报, 2007, 19( 5): 89
28 Li X X, Jia C L, Zhang Y, et al. Incipient melting phase and its dissolution kinetics for a new superalloy [J]. Trans. Nonferrous Met. Soc., 2020, 30: 2107
29 Ding Y T, Dou Z Y, Gao Y B, et al. Phase transformation during metling and solidifying process of homogenized superalloy GH3625 [J]. Chin. J. Mater. Res., 2017, 31: 853
丁雨田, 豆正义, 高钰璧等. 均匀化态GH3625合金熔化和凝固过程中的相变 [J]. 材料研究学报, 2017, 31: 853
30 Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., 2019, A767: 138361
31 Jiang H, Dong J X, Zhang M C, et al. Evolution of twins and substructures during low strain rate hot deformation and contribution to dynamic recrystallization in alloy 617B [J]. Mater. Sci. Eng., 2016, A649: 369
32 Gleiter H. The formation of annealing twins [J]. Acta Metall., 1969, 17: 1421
33 Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
34 Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A: 2056
35 Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys [J]. Intermetallics, 2000, 8: 1119
36 Malitckii E, Remes H, Lehto P, et al. Strain accumulation during microstructurally small fatigue crack propagation in bcc Fe-Cr ferritic stainless steel [J]. Acta Mater., 2018, 144: 51
37 Liu X G, Xu H, Gao X. Fracture failure analysis of automotive main axle [J]. Found. Technol., 2018, 39: 933
刘晓光, 徐 浩, 高 鑫. 汽车主轴的断裂失效分析 [J]. 铸造技术, 2018, 39: 933
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!