|
|
Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion |
CHEN Jianjun1, DING Yutian1( ), WANG Kun2, YAN Kang1, MA Yuanjun1, WANG Xingmao1, ZHOU Shengming3 |
1.State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2.The 404 Company Limited, China National Nuclear Industry Corporation, Jiayuguan 735100, China 3.State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Company Limited, Jinchang 737100, China |
|
Cite this article:
CHEN Jianjun, DING Yutian, WANG Kun, YAN Kang, MA Yuanjun, WANG Xingmao, ZHOU Shengming. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion. Acta Metall Sin, 2021, 57(5): 641-650.
|
Abstract GH3625 superalloy is a type of solid-solution strengthened nickel-based wrought superalloy having Mo and Nb as the main strengthening elements. Because of its excellent high-temperature mechanical properties and oxidation resistance below 650 oC, it can be used in harsh stress and atmosphere environments. It is mainly used as a pipe material for aeroengine fuel main pipe, nuclear power steam generator heat transfer pipe, and pressure pipe, etc. Owing to the high alloying degree of nickel-based superalloys, large deformation resistance, and narrow thermal processing temperature range, the pipe preparation process is complicated. In this study, the as-cast and homogenized pipe billets were used for a short-flow hot extrusion pipe preparation test using the same process. The homogenized pipe billet was extruded successfully, and the pipe burst occurred during the extrusion of the as-cast billet. The pipe burst behavior was studied by OM, SEM, and EBSD, with an EDS analysis. The results showed a considerable amount of Laves phases in the as-cast pipe billet, and the Laves phases and micro-segregation were essentially eliminated after homogenization. Adiabatic heating of the as-cast pipe billet leads to the Laves phase remelting during the hot extrusion process, which is the main reason for pipe bursting during a hot extrusion process. The cracking mode of the pipe burst is a quasi-cleavage fracture, combining brittle fracture and ductile fracture with the predominance of the brittle fracture.
|
Received: 17 July 2020
|
|
Fund: National Key Research and Development Program of China(2017YFA0700703);National Natural Science Foundation of China(51661019);Program for Major Projects of Science and Technology in Gansu Province(145RTSA004);Program for State Key Laboratory Nickel and Cobalt Resources Comprehensive Utilization(301170503);Program for Hongliu First-Class Discipline Construction Plan of Lanzhou University of Technology |
About author: DING Yutian, professor, Tel: (0931)2976688, E-mail: dingyt@lut.edu.cn
|
1 |
Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 1
|
|
郭建亭. 高温合金材料学 (上册) [M]. 北京: 科学出版社, 2008: 1
|
2 |
Shi C X, Zhong Z Y. Fifty Years Development of Superalloy in China [M]. Beijing: Metallurgical Industry Press, 2006: 1
|
|
师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 1
|
3 |
Gao Y B, Ding Y T, Chen J J, et al. Evolution of microstructure and texture during cold deformation of hot-extruded GH3625 alloy [J]. Acta Metall. Sin., 2019, 55: 547
|
|
高钰璧, 丁雨田, 陈建军等. 挤压态GH3625合金冷变形过程中的组织和织构演变 [J]. 金属学报, 2019, 55: 547
|
4 |
Dang L, Yang H, Guo L G, et al. DRX rules during extrusion process of large-scale thick-walled Inconel 625 pipe by FE method [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3037
|
5 |
Tian D. Development and production of high-temperature alloy seamless tubulars [J]. Steel Pipe, 2002, 31( 3): 1
|
|
田 党. 高温合金无缝管材的研制与生产 [J]. 钢管, 2002, 31( 3): 1
|
6 |
Zou Z H. Development of domestic manufacturing technologies for stainless steel tubes and gap with similar technologies developed overseas [J]. Steel Pipe, 2000, 29( 6): 7
|
|
邹子和. 我国不锈钢管生产技术的进展及其与国外的差距 [J]. 钢管, 2000, 29( 6): 7
|
7 |
Li D F, Wu Z G, Guo S L, et al. Study on the processing map of GH625 Ni-based alloy deformed at high temperature [J]. Rare Met. Mater. Eng., 2012, 41: 1026
|
|
李德富, 吾志岗, 郭胜利等. GH625镍基合金高温塑性变形加工图研究 [J]. 稀有金属材料与工程, 2012, 41: 1026
|
8 |
Ding Y T, Chen J J, Li H F, et al. Study on processing map of homogenized GH3625 superalloy and its tube manufacturing by short-flow hot extrusion [J]. Mater. Rev., 2019, 33: 2753
|
|
丁雨田, 陈建军, 李海峰等. 均匀化态GH3625合金热加工图及短流程热挤压管材研究 [J]. 材料导报, 2019, 33: 2753
|
9 |
Wei J X, Su C L, He Y H. The research on hot extruding temperature of GH3625 alloy tube billet [J]. Spec. Steel Technol., 2015, 21( 2): 38
|
|
韦家向, 苏承龙, 何云华. GH3625合金管坯热挤压温度研究 [J]. 特钢技术, 2015, 21( 2): 38
|
10 |
Ding Y T, Liu D X, Hu Y, et al. A short-flow hot extrusion process for forming Inconel 625 superalloy pipe [P]. Chin Pat, 201510899976.1, 2015
|
|
丁雨田, 刘德学, 胡 勇等. 短流程热挤压变形高温合金Inconel 625管材方法 [P]. 中国专利, 201510899976.1, 2015))
|
11 |
Liu D X, Cheng X W, Zhang X, et al. Effects of heating and hot extrusion process on microstructure and properties of Inconel 625 alloy [J]. J. Wuhan Univ. Technol., 2016, 31: 1368
|
12 |
Dong J X. Extrusion and Microstructure Control of Nickel based Alloy Tubes [M]. Beijing: Metallurgical Industry Press, 2014: 1
|
|
董建新. 镍基合金管材挤压及组织控制 [M]. 北京: 冶金工业出版社, 2014: 1
|
13 |
Wang B S, Shao Y, Su C. Investigation on cracks in 825 alloy pipe during hot extrusion process [J]. Hot Work. Technol., 2013, 42( 15): 127
|
|
王宝顺, 邵 羽, 苏 诚. 825合金热挤压管裂纹研究 [J]. 热加工工艺, 2013, 42( 15): 127
|
14 |
Gao Y G, Sun H G, Pang Y S, et al. Investigation of hot extrusion-caused cracking of Inconel 718 seamless steel tube and related control measures [J]. Steel Pipe, 2017, 46( 6): 44
|
|
高玉光, 孙海刚, 庞于思等. Inconel 718无缝钢管热挤压开裂原因分析和控制 [J]. 钢管, 2017, 46( 6): 44
|
15 |
Peng H J. Study on hot deformation behaviors and hot tube extrusion mechanism of GH690 alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
|
|
彭海健. GH690合金热变形行为及管材热挤压机理研究 [D]. 北京: 北京有色金属研究总院, 2014
|
16 |
Wang B. High speed hot tube extrution process of Inconel690 superalloy [J]. Rare Met. Mater. Eng., 2014, 43( ): 137
|
|
王 彬. Inconel690合金管高速热挤压成形工艺研究 [J]. 稀有金属材料与工程, 2014, 43( ): 137
|
17 |
Jiang H, Yang L, Dong J X, et al. The recrystallization model and microstructure prediction of alloy 690 during hot deformation [J]. Mater. Des., 2016, 104: 162
|
18 |
Godasu A K, Prakash U, Mula S. Flow stress characteristics and microstructural evolution of cast superalloy 625 during hot deformation [J]. J. Alloys Compd., 2020, 844: 156200
|
19 |
Guo S L, Li D F, Guo Q M, et al. Investigation on hot workability characteristics of Inconel 625 superalloy using processing maps [J]. J. Mater. Sci., 2012, 47: 5867
|
20 |
Wang Y, Wang J S, Dong J S, et al. Hot deformation characteristics and hot working window of as-cast large-tonnage GH3535 superalloy ingot [J]. J. Mater. Sci. Technol., 2018, 34: 2439
|
21 |
Lypchanskyi O, Śleboda T, Zygula K, et al. Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps [J]. Materials, 2020, 13: 3629
|
22 |
Yao Z H, Dong J X, Zhang M C, et al. Hot deformation behaviour of superalloy GH738 [J]. Rare Met. Mater. Eng., 2013, 42: 1199
|
|
姚志浩, 董建新, 张麦仓等. GH738高温合金热加工行为 [J]. 稀有金属材料与工程, 2013, 42: 1199
|
23 |
Ding Y T, Gao X, Dou Z Y, et al. Numerical simulation of hot extrusion process of GH3625 alloy tubes [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 1121
|
|
丁雨田, 高 鑫, 豆正义等. GH3625合金管材热挤压过程的数值模拟 [J]. 特种铸造及有色合金, 2016, 36: 1121
|
24 |
Ding Y T, Wang K, Gao Y B, et al. Microstructure and crack forming mechanism of GH3625 alloy tube by hot extruded forming process [J]. Rare Met. Mater. Eng., 2020, 49: 1743
|
|
丁雨田, 王 琨, 高钰璧等. 热挤压成形GH3625合金管材组织及裂纹形成机理 [J]. 稀有金属材料与工程, 2020, 49: 1743
|
25 |
Ding Y T, Li H F, Wang W, et al. Microsegregation and homogenization of GH3625 alloy ingot [J]. Mater. Sci. Technol., 2016, 24( 6): 14
|
|
丁雨田, 李海峰, 王 伟等. 铸锭GH3625合金微观偏析及均匀化热处理 [J]. 材料科学与工艺, 2016, 24( 6): 14
|
26 |
Schirra J J, Caless R H, Hatala R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Warrendale, PA: The Minerals, Metals & Materials Society, 1991: 375
|
27 |
Deng Q, Du J H, Zhuang J Y, et al. As-cast microstructure and segregation improvement of alloy GH742y [J]. J. Iron Steel Res., 2007, 19( 5): 89
|
|
邓 群, 杜金辉, 庄景云等. GH742y合金的铸态组织及铸态偏析的改善 [J]. 钢铁研究学报, 2007, 19( 5): 89
|
28 |
Li X X, Jia C L, Zhang Y, et al. Incipient melting phase and its dissolution kinetics for a new superalloy [J]. Trans. Nonferrous Met. Soc., 2020, 30: 2107
|
29 |
Ding Y T, Dou Z Y, Gao Y B, et al. Phase transformation during metling and solidifying process of homogenized superalloy GH3625 [J]. Chin. J. Mater. Res., 2017, 31: 853
|
|
丁雨田, 豆正义, 高钰璧等. 均匀化态GH3625合金熔化和凝固过程中的相变 [J]. 材料研究学报, 2017, 31: 853
|
30 |
Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., 2019, A767: 138361
|
31 |
Jiang H, Dong J X, Zhang M C, et al. Evolution of twins and substructures during low strain rate hot deformation and contribution to dynamic recrystallization in alloy 617B [J]. Mater. Sci. Eng., 2016, A649: 369
|
32 |
Gleiter H. The formation of annealing twins [J]. Acta Metall., 1969, 17: 1421
|
33 |
Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
|
李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
|
34 |
Mandal S, Bhaduri A K, Sarma V S. Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel [J]. Metall. Mater. Trans., 2012, 43A: 2056
|
35 |
Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys [J]. Intermetallics, 2000, 8: 1119
|
36 |
Malitckii E, Remes H, Lehto P, et al. Strain accumulation during microstructurally small fatigue crack propagation in bcc Fe-Cr ferritic stainless steel [J]. Acta Mater., 2018, 144: 51
|
37 |
Liu X G, Xu H, Gao X. Fracture failure analysis of automotive main axle [J]. Found. Technol., 2018, 39: 933
|
|
刘晓光, 徐 浩, 高 鑫. 汽车主轴的断裂失效分析 [J]. 铸造技术, 2018, 39: 933
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|