Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (6): 749-756    DOI: 10.11900/0412.1961.2020.00310
Research paper Current Issue | Archive | Adv Search |
Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel
LIU Man1,2, HU Haijiang1,2(), TIAN Junyu1,2, XU Guang1,2
1.State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel. Acta Metall Sin, 2021, 57(6): 749-756.

Download:  HTML  PDF(7172KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultra-high-strength bainitic steels with excellent combinations of strength and ductility may be the new generation of metallurgical interest. However, there still exist some production problems, such as long transformation times due to low-temperature processing and difficulty in tailoring the elongation. In this work, both ausforming and austempering were used to investigate the effects of deformation on the transformation and microstructure in a medium-carbon bainitic steel. The Gleeble 3500 simulator, SEM, TEM, XRD, and tensile tests were used to analyze the effects of ausforming on retained austenite, the strength and plasticity of bainitic steel. The results show that ausforming at 300oC with a strain of 0.2 not only accelerates the kinetics of isothermal transformation, but also refines the bainitic microstructure and optimizes the retained austenite and its stability. The stability of the retained austenite is affected by the carbon content and dislocation density, and the carbon content can be increased by prolonging the duration of the isothermal stage. The volume fraction of retained austenite is increased by ausforming because of the enhanced dislocation density, which leads to ultra-high-strength bainitic steel with excellent properties of a tensile strength of 1733 MPa and ductility of 15.7%.

Key words:  bainitic steel      retained austenite      ausforming      microstructure      mechanical property     
Received:  17 August 2020     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51704217);Major Projects of Technology Innovation of Hubei Province(2017AAA116)
About author:  HU Haijiang, associate professor, Tel: 13638676695, E-mail: huhaijiang@wust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00310     OR     https://www.ams.org.cn/EN/Y2021/V57/I6/749

Fig.1  Schematic of thermal simulation experiment (Ms—martensite transformation start temperature)
Fig.2  SEM images of non-deformed (a) and deformed (b) samples at room temperature (M—martensite, BF—bainite ferrite, RA—retained austenite)
Fig.3  Low (a, b) and high (c, d) magnified TEM images of non-deformed (a, c) and deformed (b, d) samples
Fig.4  Changes of relative dilatation of non-deformed and deformed samples during isothermal holding
Fig.5  The bainitic transformation rate curves of non-deformed and deformed samples
Fig.6  XRD spectra of non-deformed and deformed samples
Sampleσs / MPaσp / MPaδ / %PSE / (GPa·%)
Non-deformed1041 ± 321507 ± 3413.1 ± 0.919.7
Deformed1358 ± 341733 ± 3815.7 ± 0.927.2
Table 1  Results of tensile tests of non-deformed and deformed samples
1 Bhadeshia H K D H. Bainite in Steels [M]. 3rd Ed., London: CRC Press, 2015: 311
2 Bhadeshia H K D H. Nanostructured bainite [J]. Proc. R. Soc., 2010, 466A: 3
3 García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495
4 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Mater. Sci. Technol., 2002, 18: 279
5 Chen X W, Qiao G Y, Han X L, et al. Effects of Mo, Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels [J]. Mater. Des., 2014, 53: 888
6 Han Y, Kuang S, Liu H S, et al. Effect of chromium on microstructure and mechanical properties of cold rolled hot-dip galvanizing DP450 steel [J]. J. Iron Steel Res. Int., 2015, 22: 1055
7 Hu F, Wu K M, Zheng H. Influence of Co and Al on bainitic transformation in super bainitic steels [J]. Steel Res. Int., 2013, 84: 1060
8 Hu F, Wu K M, Hou T P, et al. Effect of tempering temperature on the microstructure and hardness of a super-bainitic steel containing Co and Al [J]. ISIJ Int., 2014, 54: 926
9 Kammouni A, Saikaly W, Dumont M, et al. Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels [J]. Mater. Sci. Eng., 2009, A518: 89
10 Hu F, Hodgson P D, Wu K M. Acceleration of the super bainite transformation through a coarse austenite grain size [J]. Mater. Lett., 2014, 122: 240
11 Long X Y, Zhang F C, Kang J, et al. Low-temperature bainite in low-carbon steel [J]. Mater. Sci. Eng., 2014, A594: 344
12 Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates [J]. Mater. Sci. Eng., 2006, A438-440: 145
13 Wang X L, Wu K M, Hu F, et al. Multi-step isothermal bainitic transformation in medium-carbon steel [J]. Scr. Mater., 2014, 74: 56
14 Bhadeshia H K D H. Thermodynamic analysis of isothermal transformation diagrams [J]. Metall. Sci., 1982, 16: 159
15 Xia Y, Miyamoto G, Yang Z G, et al. Direct measurement of carbon enrichment in the incomplete bainite transformation in Mo added low carbon steels [J]. Acta Mater., 2015, 91: 10
16 Wu H D, Miyamoto G, Yang Z G, et al. Incomplete bainite transformation accompanied with cementite precipitation in Fe-1.5(3.0)%Si-0.4%C alloys [J]. Acta Metall. Sin., 2018, 54: 367
武慧东, 宫本吾郎, 杨志刚等. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出 [J]. 金属学报, 2018, 54: 367
17 Gong W, Tomota Y, Adachi Y, et al. Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel [J]. Acta Mater., 2013, 61: 4142
18 Kundu S, Verma A K, Sharma V. Quantitative analysis of variant selection for displacive transformations under stress [J]. Metall. Mater. Trans., 2012, 43A: 2552
19 Beladi H, Tari V, Timokhina I B, et al. On the crystallographic characteristics of nanobainitic steel [J]. Acta Mater., 2017, 127: 426
20 Xu S X, Yu W, Li S J, et al. Effects of pre-deformation temperature on nanobainite transformation kinetics and microstructure [J]. Acta Metall. Sin., 2018, 54: 1113
徐士新, 余 伟, 李舒笳等. 预变形温度对纳米贝氏体相变动力学及组织的影响 [J]. 金属学报, 2018, 54: 1113
21 Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite [J]. ISIJ Int., 2003, 43: 1821
22 Cornide J, Miyamoto G, Caballero F G, et al. Distribution of dislocations in nanostructured bainite [J]. Solid State Phenom., 2011, 172-174: 117
23 Eres-Castellanos A, Morales-Rivas L, Latz A, et al. Effect of ausforming on the anisotropy of low temperature bainitic transformation [J]. Mater. Charact., 2018, 145: 371
24 Zhou M X, Xu G, Wang L, et al. Comprehensive analysis of the dilatation during bainitic transformation under stress [J]. Met. Mater. Int., 2015, 21: 985
25 van Bohemen S M C, Sietsma J. Modeling of isothermal bainite formation based on the nucleation kinetics [J]. Int. J. Mater. Res., 2008, 99: 739
26 Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Mater. Sci. Eng., 2010, A527: 3442
27 Dyson D J, Holmes B. Effect of alloying additions on the lattice parameter of austenite [J]. J. Iron Steel Inst., 1970, 208: 469
28 Cullity B D. Elements of X-ray Diffraction [M]. 2nd Ed., Reading, Massachusetts: Addison-Wesley Publishing Company, 1978: 359
29 Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite [J]. Mater. Sci. Technol., 1994, 10: 209
30 Reisner G, Werner E A, Kerschbaummayr P, et al. The modeling of retained austenite in low-alloyed TRIP steels [J]. JOM, 1997, 49(9): 62
31 De Meyer M, Vanderschueren D, De Cooman B C. The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels [J]. ISIJ Int., 1999, 39: 813
32 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
33 Zhao Y, Zhu W T, Yan S, et al. Effect of microstructure on tensile behavior and mechanical stability of retained austenite in a cold-rolled Al-containing TRIP steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1237
34 Bai D Q, Di Chiro A, Yue S. Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel [J]. Mater. Sci. Forum, 1998, 284-286: 253
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!