Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (12): 1569-1580    DOI: 10.11900/0412.1961.2020.00154
Current Issue | Archive | Adv Search |
Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy
LIU Yi1, TU Jian1,2(), YANG Weihua1, YIN Ruisen3, TAN Li1, HUANG Can1, ZHOU Zhiming1,2
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
Cite this article: 

LIU Yi, TU Jian, YANG Weihua, YIN Ruisen, TAN Li, HUANG Can, ZHOU Zhiming. Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy. Acta Metall Sin, 2020, 56(12): 1569-1580.

Download:  HTML  PDF(5664KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, non-equiatomic high-entropy alloy (HEA) has been proposed to explore the flexibility of its design rule, avoiding the strength-ductility tradeoff. For further progress, non-equiatomic HEAs doped with interstitial atoms are developed. Boron, an effective dopant in metallurgy, has been used due to the beneficial compositional effects on the interfaces of metallic materials. In this work, the effects of deformation and annealing treatments on the microstructural evolution of Fe47Mn30Co10Cr10B3 dual-phase HEAs were investigated via electron channeling contrast imaging (ECCI) and EBSD. The results show that there are three stages in the deformation mechanism with an increase in the deformation degree, which include the dominant dislocation slip in the fcc phase, joint deformation of the transformation-induced plasticity and dislocation slip, and activation of dislocation slip in the hcp phase. With an increase in the annealing holding time, the partial recrystallization transformed to complete recrystallization. Further, particles located in the grain boundary can effectively restrain grain growth, and in turn, exhibit the bimodal grain size. The amount of annealing twinning variants is influenced by the fcc grain orientation: grains with <101> orientation are prone to forming multiple twinning variants, whereas, grains with <111> and <100> orientations are prone to forming a single twinning variant. The amount of annealing twinning variants also affected the morphological characteristics of the single hcp variant; the absence of annealing twinning variant is ascribed to the formation of blocky hcp phases and the single annealing twinning variant is attributed to the formation of laminate hcp phase. Moreover, the number of hcp variants was affected by the fcc grain sizes; large-sized grains facilitated the formation of multiple hcp variants, whereas, small-sized grains facilitated the formation of the single hcp variant.

Key words:  high entropy alloy      microstructure      transformation-induced plasticity      variant     
Received:  11 May 2020     
ZTFLH:  TG113.1  
Fund: Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN201801139);China Postdoctoral Science Foundation Funded Project(2018M632250);Graduate Student Innovation Program of Chongqing University of Technology(ycx20192040)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00154     OR     https://www.ams.org.cn/EN/Y2020/V56/I12/1569

Fig.1  Pseudo binary phase diagram of Fe50-xMn30Co10Cr10Bx (x=0~5) high entropy alloy (HEA) (a), and fractions of stable phases as a function of temperature for x=0 (b) and x=3 (c) HEA
Fig.2  SEM images of microstructures of as-cast Fe47Mn30Co10Cr10B3 HEA (a~c), and EDS maps of the square region in Fig.2b (d~h)
LocationFeMnCoCrB
117.4424.461.3447.918.85
247.0627.349.8010.625.18
Table 1  EDS results of the second phase particles and the matrix phase in Fig.2c
Fig.3  XRD spectrum of as-cast Fe47Mn30Co10Cr10B3 HEA
Fig.4  Microstructure evolutions of Fe47Mn30Co10Cr10B3 HEA with deformations of 10% (a1~a4), 20% (b1~b4) and 50% (c1~c4) (MB—microband, KB—kink band, LB—lamellar boundary)
Fig.5  EBSD maps of Fe47Mn30Co10Cr10B3 HEA with deformations of 10% (a1~a3), 20% (b1~b3) and 50% (c1~c3)
Fig.6  Microstructures of deformed Fe47Mn30Co10Cr10B3 HEA after different annealing treatments (DM—deformed microstructure, ITB—incoherent twin boundary, CTB—coherent twin boundary)
Fig.7  IPF maps (a1~e1), phase maps (a2~e2) and grain boundary maps (a3~e3) of Fe47Mn30Co10Cr10B3 (a1~d3) and Fe50Mn30Co10Cr10 (e1~e3) HEA after different annealing treatments
Fig.8  Analysis of twinning variants in deformed 50% Fe47Mn30Co10Cr10B3 HEA under annealing at 1000 ℃ for 1 min (a1~a4), 5 min (b1~b4) and 30 min (c1~c4) (Red circles—the activated variant of annealing twins; M—the fcc matrix)
Fig.9  Analyses of thermal-induced hcp variants in Fe47Mn30Co10Cr10B3 HEA under annealing at 1000 ℃ for 5 min (a1~a6) and 30 min (b1~b6) (black triangle—the activated variant of hcp; red circle—the activated variant of annealing twins)
Fig.10  Schematics showing microstructure evolution of Fe47Mn30Co10Cr10B3 HEA after deformation and annealing (a~h)
[1] Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
[2] Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
doi: 10.1080/21663831.2014.912690
[3] Sharma A S, Yadav S, Biswas K, et al. High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement [J]. Mater. Sci. Eng., 2018, R131: 1
[4] Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
doi: 10.1007/s40843-017-9195-8
[5] Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Mater., 2013, 61: 2628
doi: 10.1016/j.actamat.2013.01.042
[6] Li Z M, Raabe D. Strong and ductile non-equiatomic high-entroy alloys: Design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69: 2099
doi: 10.1007/s11837-017-2540-2 pmid: 31983864
[7] Pradeep K G, Tasan C C, Yao M J, et al. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design [J]. Mater. Sci. Eng., 2015, A648: 183
[8] Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981 pmid: 27279217
[9] Chang X J, Zeng M Q, Liu K L, et al. Phase engineering of high-entropy alloys [J]. Adv. Mater., 2020, 32: 1907226
doi: 10.1002/adma.v32.14
[10] Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties [J]. Prog. Mater. Sci., 2020: 100709
[11] Guo W Q, Su J, Lu W J, et al. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy [J]. Acta Mater., 2020, 185: 45
doi: 10.1016/j.actamat.2019.11.055
[12] Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
pmid: 28604656
[13] He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
[14] Wei D X, Li X Q, Jiang J, et al. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys [J]. Scr. Mater., 2019, 165: 39
doi: 10.1016/j.scriptamat.2019.02.018
[15] Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
doi: 10.11900/0412.1961.2016.00383
(吕昭平, 蒋虽合, 何骏阳等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183)
doi: 10.11900/0412.1961.2016.00383
[16] Lv Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-rntropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
(吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553)
doi: 10.11900/0412.1961.2018.00372
[17] Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
[18] Lei Z F, Wu Y, He J Y, et al. Snoek-type damping performance in strong and ductile high-entropy alloys [J]. Sci. Adv., 2020, 6: eaba7802
doi: 10.1126/sciadv.aba7802 pmid: 32596465
[19] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
doi: 10.1016/0001-6160(85)90139-7
[20] Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
doi: 10.1016/j.cossms.2014.06.002
[21] Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
[22] Hansen N, Barlow C Y. Plastic deformation of metals and alloys [A]. Laughlin D E, Hono K. Physical Metallurgy II [M]. 5th Ed., Amsterdam: Elsevier Press, 2014: 1681
[23] Mahajan S, Green M L, Brasen D. A model for the FCC→HCP transformation, its applications, and experimental evidence [J]. Metall. Trans., 1977, 8A: 283
[24] Fujita H, Ueda S. Stacking faults and f.c.c. (γ)→h.c.p. (ε) transformation in 188-type stainless steel [J]. Acta Metall., 1972, 20: 759
doi: 10.1016/0001-6160(72)90104-6
[25] Raabe D. Physical Metallurgy [M]. 5th Ed., Oxford: Elsevier Press, 2014: 2291
[26] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., London: Elsevier Press, 2004: 121
[27] Humphreys F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles [J]. Acta Mater., 1997, 45: 5031
doi: 10.1016/S1359-6454(97)00173-0
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!