Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (8): 1067-1074    DOI: 10.11900/0412.1961.2019.00435
Current Issue | Archive | Adv Search |
Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel
XU Zhanyi1, SHA Yuhui1(), ZHANG Fang1, ZHANG Huabing2, LI Guobao2, CHU Shuangjie2, ZUO Liang1,3
1 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2 Baoshan Iron & Steel Cooperation Limited, Shanghai 201900, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel. Acta Metall Sin, 2020, 56(8): 1067-1074.

Download:  HTML  PDF(2649KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The key index of grain-oriented silicon steel is the sharpness of secondary recrystallization Goss ({110}<001>) texture, which is determined by the matrix grain size distribution, texture environment and inhibitor level. In the widely used low-temperature slab heating process in virtue of high efficiency and low-cost manufacturing, the instability of inhibitor and the enlarged matrix grain size distribution seriously restrict the occurrence of secondary recrystallization and the sharpness of Goss texture. The investigation on orientation selection behavior during abnormal grain growth can explore the potential routines to solve the problem. In this work, the evolution process of secondary recrystallization texture in grain-oriented silicon steel has been studied by both experiment and calculation. It is found that single Goss texture is finally obtained by means of continuous orientation selection during secondary recrystallization. The kinetic model for secondary recrystallization, introduced with orientation-dependent relative grain boundary energy coefficient, can describe quantitatively the difference in growth rate between Goss grains with various deviation angles and non-Goss grains. The combined effects of grain size distribution, grain boundary characteristic between Goss and matrix grains, together with inhibition force level on orientation selection behavior are analyzed. Accordingly, a multi-parameter matching method for promoting the advantage of Goss grains in orientation selection is proposed.

Key words:  grain-oriented silicon steel      secondary recrystallization      texture      inhibition force      grain size     
Received:  17 December 2019     
ZTFLH:  TG142.77  
Fund: National Key Research and Development Program of China(2016YFB0300305);National Natural Science Foundation of China(51671049);National Natural Science Foundation of China(51931002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00435     OR     https://www.ams.org.cn/EN/Y2020/V56/I8/1067

Fig.1  Grain size distributions of matrix and Goss grains in Fe-3.25%Si grain-oriented silicon steel after primary recrystallization (a) and at the beginning of secondary recrystallization (b)
Fig.2  φ2=45° section of ODF (levels: 1, 2, 3?) (a), number fraction of several main texture components (b) and deviation angle distribution of Goss grains (c) in primarily recrystallized Fe-3.25%Si grain-oriented silicon steel (ODF—orientation distribution function; φ1, φ2, Φ—Euler angles)
Color online
Fig.3  Microstructures of different secondary recrystallizaton grains (a, c) and (100) pole figures of secondary recrystallization grains (b, d) in Fe-3.25%Si grain-oriented silicon steel after annealing at 1000 ℃ for 100 s (a, b) and 200 s (c, d) (TD—transverse direction, RD—rolling direction)
Fig.4  Macrostructure (a) and (100) pole figure (b) of Fe-3.25%Si grain-oriented silicon steel after complete secondary recrystallization
Fig.5  Deviation angle distribution of Goss secondary recrystallization grains
Fig.6  Grain size contours with variables of emj and initial grain size at the beginning of secondary recrystallization after annealing at 1000 ℃ for 100 s (a) and 200 s (b) (emj—relative grain boundary energy coefficient, Z—Zener factor, t—annealing time, sold line—grain size contour, dash line—critical condition of secondary recrystallization)
Fig.7  Grain size contours with variables of emj and initial grain size under Z=0.071 μm-1 (a) and Z=0.1 μm-1 (b) after annealing at 1000 ℃ for 100 s
[1] Hayakawa Y. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel [J]. Sci. Technol. Adv. Mater., 2017, 18: 480
doi: 10.1080/14686996.2017.1341277 pmid: 28804524
[2] Xia Z S, Kang Y L, Wang Q L. Developments in the production of grain-oriented electrical steel [J]. J. Magn. Magn. Mater., 2008, 320: 3229
doi: 10.1016/j.jmmm.2008.07.003
[3] Moses A J. Energy efficient electrical steels: Magnetic performance prediction and optimization [J]. Scr. Mater., 2012, 67: 560
doi: 10.1016/j.scriptamat.2012.02.027
[4] He C X, Yang F Y, Yan G C, et al. Effect of normalizing on textures of thin-gauge grain-oriented silicon steel [J]. Acta Metall. Sin., 2016, 52: 1063
doi: 10.11900/0412.1961.2015.00554
(何承绪, 杨富尧, 严国春等. 常化处理对薄规格取向硅钢织构的影响 [J]. 金属学报, 2016, 52: 1063)
doi: 10.11900/0412.1961.2015.00554
[5] Chu S J, Yang Y J, He Z H, et al. Calculation of magnetostriction coefficient for laser-scribed grain-oriented silicon steel based on magnetic domain interaction [J]. Acta Metall. Sin., 2019, 55: 362
doi: 10.11900/0412.1961.2018.00242
(储双杰, 杨勇杰, 和正华等. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算 [J]. 金属学报, 2019, 55: 362)
doi: 10.11900/0412.1961.2018.00242
[6] Ushigami Y, Mizokami M, Fujikura M, et al. Recent development of low-loss grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 307
doi: 10.1016/S0304-8853(02)00933-2
[7] Harase J, Shimizu R. Distribution of {110}<001> oriented grains in the primary recrystallized 3% Si-Fe alloy [J]. Trans. Jpn. Inst. Met., 1988, 29(5): 388
doi: 10.2320/matertrans1960.29.388
[8] Hayakawa Y, Szpunar J A, Palumbo G, et al. The role of grain boundary character distribution in Goss texture development in electrical steels [J]. J. Magn. Magn. Mater., 1996, 160: 143
doi: 10.1016/0304-8853(96)00141-2
[9] Rouag N, Vigna G, Penelle R. Evolution of local texture and grain boundary characteristics during secondary recrystallisation of Fe-3%Si sheets [J]. Acta Metall. Mater., 1990, 38: 1101
doi: 10.1016/0956-7151(90)90182-G
[10] Shimizu R, Harase J. Coincidence grain boundary and texture evolution in Fe-3%Si [J]. Acta Mater., 1989, 37: 1241
doi: 10.1016/0001-6160(89)90118-1
[11] Lin P, Palumbo G, Harase J, et al. Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3%Si alloy [J]. Acta Mater., 1996, 44: 4677
doi: 10.1016/S1359-6454(96)00140-1
[12] Kumano T, Ushigami Y. Grain boundary characteristics of isolated grains in conventional grain oriented silicon steel [J]. ISIJ Int., 2007, 47: 890
doi: 10.2355/isijinternational.47.890
[13] Hayakawa Y, Szpunar J A. The role of grain boundary character distribution in secondary recrystallization of electrical steels [J]. Acta Mater., 1997, 45: 1285
doi: 10.1016/S1359-6454(96)00251-0
[14] Hayakawa Y, Szpunar J A. A new model of Goss texture development during secondary recrystallization of electrical steel [J]. Acta Mater., 1997, 45: 4713
doi: 10.1016/S1359-6454(97)00111-0
[15] Rajmohan N, Szpunar J A, Hayakawa Y. A role of fractions of mobile grain boundaries in secondary recrystallization of Fe-Si steels [J]. Acta Mater., 1999, 47: 2999
doi: 10.1016/S1359-6454(99)00162-7
[16] Rajmohan N, Szpunar J A, Hayakawa Y. Importance of fractions of highly mobile boundaries in abnormal growth of Goss grains [J]. Mater. Sci. Eng., 1999, A259: 8
[17] Rajmohan N, Szpunar J A. An analytical method for characterizing grain boundaries around growing Goss grains during secondary recrystallization [J]. Scr. Mater., 2001, 44: 2387
doi: 10.1016/S1359-6462(01)00941-1
[18] Morawiec A. Grain misorientations in theories of abnormal grain growth in silicon steel [J]. Scr. Mater., 2000, 43: 275
doi: 10.1016/S1359-6462(00)00403-6
[19] Morawiec A. On abnormal growth of Goss grains in grain-oriented silicon steel [J]. Scr. Mater., 2011, 64: 466
doi: 10.1016/j.scriptamat.2010.11.013
[20] Nakayama T, Ushigami Y. Modeling of secondary recrystallization in 3% silicon steels [J]. Mater. Sci. Forum, 1992, 94-96: 413
doi: 10.4028/www.scientific.net/MSF.94-96
[21] Ushigami Y, Kawasaki K, Nakayama T, et al. Dynamic observation of the growth of secondary recrystallized grains of Fe-3%Si alloy utilizing synchrotron X-ray topography [J]. Mater. Sci. Forum, 1994, 157-162: 1081
doi: 10.4028/www.scientific.net/MSF.157-162
[22] Ushigami Y. Theoretical analysis and computer simulation of secondary recrystallization in grain-oriented silicon steel [R]. Nippon Steel Technical Report No.102, 2013: 25
[23] Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metall., 1965, 13: 227
doi: 10.1016/0001-6160(65)90200-2
[24] Furtkamp M, Gottstein G, Molodov D A, et al. Grain boundary migration in Fe-3.5%Si bicrystals with [001] tilt boundaries [J]. Acta Mater., 1998, 46: 4103
doi: 10.1016/S1359-6454(98)00105-0
[25] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Amsterdam: Elsevier, 2004: 102
[26] Liu G T, Liu Z Q, Yang P, et al. Correlation between primary and secondary recrystallization texture components in low-temperature reheated grain-oriented silicon steel [J]. J. Iron Steel Res. Int., 2016, 23: 1234
doi: 10.1016/S1006-706X(16)30181-9
[27] Yoshitomi Y, Ushigami Y, Harase J, et al. Coincidence grain boundary and role of primary recrystallized grain growth on secondary recrystallization texture evolution in Fe-3%Si alloy [J]. Acta Metall. Mater., 1994, 42: 2593
doi: 10.1016/0956-7151(94)90200-3
[28] Ko K J, Rollett A D, Hwang N M. Abnormal grain growth of Goss grains in Fe-3%Si steel driven by sub-boundary-enhanced solid-state wetting: Analysis by Monte Carlo simulation [J]. Acta Mater., 2010, 58: 4414
doi: 10.1016/j.actamat.2010.04.038
[29] Mao W M, Zhang M H, Yang P. Behaviors of normal grain growth in polycrystalline Fe-3%Si alloys [J]. Steel Res. Int., 2014, 85: 1215
doi: 10.1002/srinv85.7
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[5] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[6] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[7] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[10] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[11] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[12] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[13] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[14] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[15] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
No Suggested Reading articles found!