Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 161-170    DOI: 10.11900/0412.1961.2019.00193
Current Issue | Archive | Adv Search |
Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content
HUA Hanyu1,2,XIE Jun1(),SHU Delong1,HOU Guichen1,Naicheng SHENG1,YU Jinjiang1,CUI Chuanyong1,SUN Xiaofeng1,ZHOU Yizhou1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Metallurgy, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(23570KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel base superalloys are widely used in the preparation of hot end parts for aircraft engines because of their good comprehensive mechanical properties, oxidation resistance and structural stability. It's strengthened mainly by solid solution strengthening, γ' phase strengthening and carbide strengthening. High alloying is one of the main methods to improve the solid solution strengthening level of nickel base superalloys, where the element W is an efficient alloying element with low price. The control of the W content is extremely important for high W content nickel base superalloys. However, there are few reports on the influence of W content on the microstructure of high W alloy. According to this background, by means of OM, SEM observation and XRD analysis, the influence of W content on the solidified microstructure in nickel base superalloy have been investigated in this work. Results show that when the W content is about 14% (mass fraction, the same below), there is no α-W phase being precipitated in the alloy. While as the content of W is higher than 16%, α-W could be precipitated during the solidification. On another hand, the grain size of the alloy decreases from 1.04 mm to 0.17 mm and the volume fraction of eutectic increases from 6% to 10% with the increase of the W content. While the content of W has no obvious effect on the sizes and morphologies of γ' phase in the dendrite and inter-dendrite areas. During solidification, the α-W phase will be first precipitated due to its higher precipitation temperature, and the shrinkage of the residual liquid phase may cause the shift and growth of the α-W to the core of the liquid phase. The α-W could be as the core of the heterogeneous nucleation to reduce the critical nucleation energy, which is the main reason that the grain size of the 18%W alloy is smaller. During the growth of the dendrites with various orientations, the concentration of Al and Ti in the residual liquid phase may have a higher concentration gradient to cause the occurrence of eutectic transformation, which is the main reason that there is a higher volume fraction of eutectic in 18%W alloy.

Key words:  high W nickel base alloy      α-W      grain size      eutectic     
Received:  13 June 2019     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China(51701212);National Natural Science Foundation of China(51571196);National Natural Science Foundation of China(51771191)
Corresponding Authors:  Jun XIE     E-mail:  junxie@imr.ac.cn

Cite this article: 

HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content. Acta Metall Sin, 2020, 56(2): 161-170.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00193     OR     https://www.ams.org.cn/EN/Y2020/V56/I2/161

No.AlTiCrCoNbHfWCNi
1615721140.1Bal.
2615721160.1Bal.
3615721180.1Bal.
Table 1  Nominal chemical compositions of nickel base superalloys (mass fraction / %)
Fig.1  XRD spectra of nickel base superalloys with various W contents
Fig.2  OM images of the nickel base superalloys with various W contents of 14%W (a), 16%W (b) and 18%W (c)
Fig.3  Grain size distributions of the nickel base superalloys with various W contents of 14%W (a), 16%W (b) and 18%W (c) (f(D)—number percentage of grains with grain size D)
Fig.4  EBSD images showing the grain boundaries in nickel base superalloys with various W contents of 14%W (a), 16%W (b) and 18%W (c)
Fig.5  SEM images of γ' phase in dendrite arm (a~c) and inter-dendritic area (d~f) in nickel base superalloys with various W contents of 14%W (a, d), 16%W (b, e) and 18%W (c, f)
Fig.6  SEM images of inter-dendritic/dendrite arm area in nickel base superalloys with various W contents of 14%W (a), 16%W (b) and 18%W (c)
AlloyAverage size / μm2Average area ratio / %
14%W353.66.4
16%W378.57.5
18%W599.210.6
Table 2  Average sizes and average area ratios of eutectic in nickel base superalloys with various W contents
Fig.7  SEM-BSE images of carbide in the nickel base superalloy containing 16%W(a) M6C (b) MC
Fig.8  SEM-SE (a) and SEM-BSE (b) images of α-W in the nickel base superalloy containing 16%W
Fig.9  SEM-SE (a) and SEM-BSE (b) images of α-W in the nickel base superalloy containing 18%W showing α-W inside the grain in area I and α-W along grain boundary in area II
Fig.10  SEM images of α-W in the inter-dendrite (a) and dendritic arm (b) in the nickel base superalloy containing 18%W
Fig.11  DTA cooling curves of the nickel base superalloys with various W contents of 14%W (a), 16%W (b) and 18%W (c) (Tdendritic, TMC, Teutectic, Tγ and Tγ' indicate dendritic, MC, eutectic, γ and γ' phase transition temperatures, respectively)
Fig.12  Schematics of the distribution changing of α-W during solidification in the 18%W alloy (The blank area is liquid phase in Figs.12a and b, while it is inter-dendrite region in Fig.12c)(a) α-W precipitation(b) α-W in the liquid phase shifts toward the core(c) α-W distribution in the late solidification stage
[1] Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
[1] (师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281)
[2] Gao S, Zhou Y Z, Li C F, et al. Effects of platinum group metals addition on the precipitation of topologically close-packed phase in Ni-base single crystal superalloys [J]. J. Alloys Compd., 2016, 671: 458
[3] Yin F S, Zheng Q, Sun X F, et al. Effect of melt treatment on carbides formation in a cast nickel-base superalloy M963 [J]. J. Mater. Process. Technol., 2007, 183: 440
[4] Phillips P J, Unocic R R, Mills M J. Low cycle fatigue of a polycrystalline Ni-based superalloy: Deformation substructure analysis [J]. Int. J. Fatigue, 2013, 57: 50
[5] Du B N, Yang J X, Cui C Y, et al. Effects of grain size on the high-cycle fatigue behavior of IN792 superalloy [J]. Mater. Des., 2015, 65: 57
[6] Chiou M S, Jian S R, Yeh A C, et al. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy [J]. Mater. Sci. Eng., 2016, A655: 237
[7] Zhang X B, Liu C S, Lv J Y, et al. Secondarily precipitated phases of a Ni-based superalloy during durable thermal treatment [J]. J. Northeastern Univ. (Nat. Sci.), 2005, 26: 355
[7] (张小彬, 刘常升, 吕俊英等. 镍基高温合金长期时效过程中第二相的析出 [J]. 东北大学学报(自然科学版), 2005, 26: 355)
[8] Tian S G, Qian B J, Li T, et al. Precipitation behavior of TCP phase and its influence on stress rupture property of single crystal nickel-based superalloys [J]. Chin. J. Nonferrous Met., 2010, 20: 2154
[8] (田素贵, 钱本江, 李 唐等. 镍基单晶合金中TCP相的析出行为及其对持久性能的影响 [J]. 中国有色金属学报, 2010, 20: 2154)
[9] Raju S V, Oni A A, Godwal B K, et al. Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure [J]. J. Alloys Compd., 2015, 619: 616
[10] Guo J T. Effects of several minor elements on superalloys and their mechanism [J]. Chin. J. Nonferrous Met., 2011, 21: 465
[10] (郭建亭. 几种微量元素在高温合金中的作用与机理 [J]. 中国有色金属学报, 2011, 21: 465)
[11] Yu Z H, Zhang Y, Zhai Y N, et al. The research progress of the role of C, B and Hf in nickel-based superalloy [J]. Foundry, 2017, 66: 1076
[11] (余竹焕, 张 洋, 翟娅楠等. C、B、Hf在镍基高温合金中作用的研究进展 [J]. 铸造, 2017, 66: 1076)
[12] Yen M K, Chen H Y. On the strengthening of nickel-base superalloys [J]. Acta Metall. Sin., 1964, 7: 307
[12] (颜鸣皋, 陈学印. 镍基高温合金的强化 [J]. 金属学报, 1964, 7: 307)
[13] Zheng L. The effects of tantalum and ruthenium on the microstructures and properties of low chromium and high tungsten content cast nickel-base superalloys [D]. Xi'an: Xi'an University of Technology, 2004
[13] (郑 亮. Ta和Ru对低Cr高W铸造镍基高温合金组织及性能的影响 [D]. 西安: 西安理工大学, 2004)
[14] Ritter N C, Sowa R, Schauer J C, et al. Effects of solid solution strengthening elements Mo, Re, Ru, and W on transition temperatures in nickel-based superalloys with high γ′-volume fraction: Comparison of experiment and CALPHAD calculations [J]. Metall. Mater. Trans., 2018, 49A: 3206
[15] Zheng Y R. Development and application of low Cr and high W content cast nickel based superalloys in China [J]. J. Aeronaut. Mater., 2003, 23(Suppl.1): 227
[15] (郑运荣. 我国低Cr高W系列铸造镍基高温合金的发展与应用 [J]. 航空材料学报, 2003, 23(增刊): 227)
[16] Xie J, Yu J J, Sun X F, et al. High-cycle fatigue behavior of K416B Ni-based casting superalloy at 700 ℃ [J]. Acta Metall. Sin., 2016, 52: 257
[16] (谢 君, 于金江, 孙晓峰等. K416B镍基铸造高温合金的700 ℃高周疲劳行为 [J]. 金属学报, 2016, 52: 257)
[17] Ma Y H, Zhao K, Yang F X, et al. Precipitation of α-W phase in nickel base superalloys [J]. J. Chin. Electr. Microsc. Soc., 2005, 24: 297
[17] (马永会, 赵 锴, 杨飞雪等. 镍基高温合金中α-W相的析出 [J]. 电子显微学报, 2005, 24: 297)
[18] Zheng L. Formation and transformation of α phase in Ta-containing low Cr and high W content cast Ni-base superalloys [J]. Chin. J. Nonferrous Met., 2005, 15: 1566
[18] (郑 亮. 含Ta低Cr高W铸造镍基高温合金中α相的形成与转变 [J]. 中国有色金属学报, 2005, 15: 1566)
[19] Xie J, Yu J J, Sun X F, et al. Microstructure and creep behavior of Hf-containing K416B as-cast Ni-based superalloy with high W content [J]. Chin. J. Nonferrous Met., 2015, 25: 1490
[19] (谢 君, 于金江, 孙晓峰等. 含铪高钨K416B镍基铸造高温合金的组织与蠕变行为 [J]. 中国有色金属学报, 2015, 25: 1490)
[20] Zhang L, Qi F, Zhang W H, et al. μ phase precipitation in a high W strengthening superalloy and its effect on tensile properties [J]. Rare Met. Mater. Eng., 2012, 41: 1965
[20] (张 磊, 祁 峰, 张伟红等. 一种高W高温合金中μ相析出及其对拉伸性能的影响 [J]. 稀有金属材料与工程, 2012, 41: 1965)
[21] Tian S G, Xia D, Li T, et al. Influence of element W and microstructure evolution on lattice parameters and misfits of nickel base superalloys [J]. J. Aeronaut. Mater., 2008, 28(4): 12
[21] (田素贵, 夏 丹, 李 唐等. W含量及组织状态对镍基高温合金晶格常数及错配度的影响 [J]. 航空材料学报, 2008, 28(4): 12)
[22] Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys—Fundamentals of a semi-empirical model [J]. Physica, 1980, 100B+C: 1
[23] Lu G M, Yue Q Z, Cui J Z. Thermodynamic properties of binary alloys of Zn-Mn and Zn-Ti [J]. Chin. J. Nonferrous Met., 2001, 11: 99
[23] (路贵民, 乐启炽, 崔建忠. Zn-Mn和Zn-Ti二元合金热力学性质 [J]. 中国有色金属学报, 2001, 11: 99)
[24] Wang W Y, Shang S L, Wang Y, et al. Impact of W on structural evolution and diffusivity of Ni-W melts: An ab initio molecular dynamics study [J]. J. Mater. Sci., 2015, 50: 1071
[25] Haidemenopoulos G N. Physical Metallurgy [M]. London: Taylor and Francis, 2018: 189
[26] Zhang Y F. The microstructure and mechanical properties of a superalloy strengthened by high W addition [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
[26] (张艳峰. 一种高W强化高温合金的组织与性能 [D]. 沈阳: 中国科学院金属研究所, 2009)
[27] Wang W, Fu L M. Effect of the Inclusions/precipitates size on the intragranular ferrite nucleation [J]. Acta Metall. Sin., 2008, 44: 723
[27] (王 巍, 付立铭. 夹杂物/析出相尺寸对晶内铁素体形核的影响 [J]. 金属学报, 2008, 44: 723)
[28] Wills V A, Mccartney D G. A comparative study of solidification features in nickel-base superalloys: Microstructural evolution and microsegregation [J]. Mater. Sci. Eng., 1991, A145: 223
[29] Pan Z Y, Hu X B, Xie G, et al. Effects of W and Re on the recrystallization of Ni-based single crystal superalloys [J]. J. Chin. Electr. Microsc. Soc., 2014, 33: 197
[29] (潘智毅, 胡肖兵, 谢 光等. 难熔元素W/Re对镍基单晶高温合金再结晶的影响 [J]. 电子显微学报, 2014, 33: 197)
[30] Zhang L, Qi F, Zhang W H, et al. Effect of Boron on solidification of high W nickel-base superalloy [J]. Hot Working Technol., 2011, 40(23): 33
[30] (张 磊, 祁 峰, 张伟红等. B对高W镍基高温合金凝固行为的影响 [J]. 热加工工艺, 2011, 40(23): 33)
[1] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[2] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[3] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[4] Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy[J]. 金属学报, 2018, 54(7): 1059-1067.
[5] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[6] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[7] Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. 金属学报, 2018, 54(12): 1801-1808.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[10] Hongwei ZHANG,Xuezhi QIN,Xiaowu LI,Lanzhang ZHOU. Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content[J]. 金属学报, 2017, 53(6): 684-694.
[11] Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. 金属学报, 2017, 53(5): 513-523.
[12] Limei KANG,Chao YANG,Yuanyuan LI. Fabrication of Novel Bimodal Titanium Alloy with High-Strength and Large-Ductility by Semi-Solid Sintering[J]. 金属学报, 2017, 53(4): 440-446.
[13] Dexin MA, Fu WANG, Xuhui WEN, Dejian SUN, Lin LIU. Influence of MC Carbides on the Formation of γ/γ′ Eutectics in Single Crystal Superalloy CM247LC[J]. 金属学报, 2017, 53(12): 1603-1610.
[14] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[15] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
No Suggested Reading articles found!