Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (11): 1457-1468    DOI: 10.11900/0412.1961.2019.00030
Current Issue | Archive | Adv Search |
Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa
FENG Hao1,LI Huabing1(),LU Pengchong1,YANG Chuntian2,JIANG Zhouhua1,WU Xiaolei3
1. School of Metallurgy, Northeastern University, Shenyang 110819, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article: 

FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa. Acta Metall Sin, 2019, 55(11): 1457-1468.

Download:  HTML  PDF(18001KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The CrCoNi medium-entropy alloy (MEA) has excellent strength and toughness, and can be used as the basis for the development of promising engineering alloys in the future. However, microbiologically influenced corrosion (MIC) of CrCoNi MEA has rarely been reported. Especially, pseudomonas aeruginosa (P. aeruginosa) is the typical bacteria associated with MIC, which is widely distributed in the ocean and soil. It can form biofilm on the surface of steel and accelerate the corrosion of carbon steels and stainless steels (SSs). In this study, the electrochemical experiments such as open current potential (OCP), linear polarization resistance (LPR), electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) were used to investigate the MIC behavior of CrCoNi MEA caused by P. aeruginosa, in comparison with 316L SS. Surface analysis techniques such as FESEM and CLSM were used to observe the P. aeruginosa biofilm and pitting morphology on the coupon surface. The results show that P. aeruginosa could form an uneven biofilm on the surface of CrCoNi MEA coupons. The P. aeruginosa accelerated the corrosion rate of CrCoNi MEA, which was demonstrated by a negative shift of open circuit potential, a decrease of polarization resistance and charge transfer resistance, and an increase of corrosion current density in P. aeruginosa medium. The P. aeruginosa biofilm could destroy the passive film of the CrCoNi MEA coupons, which led to the maximum pit depth of the coupons exposed in P. aeruginosa medium (4.8 μm) for 14 d much deeper than that in sterile medium (2.3 μm). Compared with 316L SS, CrCoNi had higher open circuit potential, lower corrosion current density and corrosion rate, and higher repairability of passive film. Meanwhile, the maximum pit depth on the CrCoNi MEA coupons in P. aeruginosa medium was shallower than that of 316L SS (5.8 μm).

Key words:  CrCoNi medium-entropy alloy (MEA)      pseudomonas aeruginosa      microbiologically influenced corrosion (MIC)      biofilm      pitting corrosion     
Received:  29 January 2019     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(51434004);National Natural Science Foundation of China(51774074);National Natural Science Foundation of China(U1435205);National Natural Science Foundation of China(51434004、51774074和U1435205);Fundamental Research Funds for the Central Universities No(N172512033);and Transformation Project of Major Scientific and Technological Achievements in Shenyang City(Z17-5-003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00030     OR     https://www.ams.org.cn/EN/Y2019/V55/I11/1457

MaterialCrCoNiCSiMnMoFe
CrCoNi MEA30.5834.7134.71-----
316L SS16.78-10.500.020.431.182.09Bal.
Table 1  Chemical compositions of CrCoNi medium-entropy alloy (MEA) and 316L stainless steel (SS) (mass fraction / %)
Fig.1  EOCP (a), 1/Rp (b) and corrosion rate (c) vs exposure time for CrCoNi MEA and 316L SS in sterile medium and pseudomonas aeruginosa (P. aeruginosa) medium (EOCP—open circuit potential, Rp—linear polarization resistance)
Fig.2  pH value change curves of the sterile medium and P. aeruginosa medium for 14 d
Fig.3  Nyquist (a, c, e) and Bode (b, d, f) plots of CrCoNi MEA in sterile medium (a, b) and P. aeruginosa medium (c, d), and 316L SS in P. aeruginosa medium (e, f) for different time (Z'—real part of impedance, Z"—imaginative part of impedance, f—frequency, Z—modulus impedance)
Fig.4  Electrochemical impedance spectroscopy (EIS) equivalent circuit diagram (Rs—resistance of solution, Qf—capacitance of oxide film layer, Rf—resistance of oxide film layer, Qdl—capacitance of electrical double-layer, Rct—charge transfer resistance of electrical double-layer)
SampleDurationRsQfYnfRfQdlYndlRctΣχ2
dΩ·cm2μF·cm-2·SnΩ·cm2μF·cm-2·Sn106 Ω·m210-3

CrCoNi MEA in sterile medium

16.7320.200.9313.110.400.921.220.22
47.0918.850.9346.26.030.927.140.34
77.2618.200.9335.66.390.919.730.41
107.0118.580.9329.56.620.927.850.27
147.3418.680.9341.05.970.9213.460.28

CrCoNi MEA in P. aeruginosa medium

18.0722.240.9026.09.400.891.380.18
46.4921.790.90144.25.020.910.830.74
76.5823.570.90131.76.310.910.770.67
106.7320.460.91195.34.150.921.140.65
146.9017.860.91314.02.860.932.760.68

316 SS in P. aeruginosa medium

15.8579.500.8630.941.900.850.290.64
45.4243.270.85607.29.240.921.061.08
75.8552.090.85521.06.170.880.550.67
104.8664.740.87802.524.970.862.580.23
144.8179.430.86689.326.080.861.460.17
Table 2  Fitting parameters for EIS of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium
Fig.5  Cyclic poarization curves of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 7 d (a) and 14 d (b) (ECP—potential, i—current density)

Sample

icorrEcorrEb,10Eprot?E
nA·cm-2VVVV
CrCoNi MEA in sterile medium4.36-0.3280.7370.7640.028
CrCoNi MEA in P. aeruginosa medium9.38-0.3680.5150.6230.016
316L SS in P. aeruginosa medium25.58-0.3730.545-0.2150.758
Table 3  Parameters obtained from cyclic polarization curves for CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 7 d
Fig.6  Macroscopic morphologies after cyclic polarization of CrCoNi MEA (a) and 316L SS (b) in P. aeruginosa medium for 14 d
Fig.7  FESEM (a, b) and CLSM (c, d) images of biofilm of CrCoNi MEA (a, c) and 316L SS (b, d) in P. aeruginosa medium for 7 dColor online
Fig.8  FESEM (a, b) and CLSM (c, d) images of biofilm of CrCoNi MEA (a, c) and 316L SS (b, d) in P. aeruginosa medium for 14 dColor online
Fig.9  Images of the maximum pit depth measured by CLSM on coupon surface of CrCoNi MEA in sterile medium (a), CrCoNi MEA in P. aeruginosa medium (b), and 316L SS in P. aeruginosa medium (c) for 14 dColor online
SampleAverage pit depthMaximum pit depth
CrCoNi MEA in sterile medium1.9±0.32.3
CrCoNi MEA in P. aeruginosa medium3.3±0.84.8
316L SS in P. aeruginosa medium3.9±0.95.8
Table 5  Pit depths of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 14 d (μm)
Fig.10  Cumulative probability plots for the pit depth of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 14 d
Fig.11  Gumbel probability plots for the pit depth of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 14 d

Sample

icorrEcorrEb,10Eprot?E
nA·cm-2VVVV
CrCoNi MEA in sterile medium12.4-0.2890.627--
CrCoNi MEA in P. aeruginosa medium30.9-0.3100.4970.5980.026
316L SS in P. aeruginosa medium33.1-0.4970.646-0.1740.819
Table 4  Parameters obtained from cyclic polarization curves for CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 14 d

Sample

Metastable pitStable pit
αμαμ
CrCoNi MEA in sterile medium0.311.71--
CrCoNi MEA in P. aeruginosa medium0.662.931.102.37
316L SS in P. aeruginosa medium0.583.351.272.89
Table 6  Gumbel distribution parameters of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 14 d
Fig.12  Probabilities of various pit depths of CrCoNi MEA and 316L SS in sterile medium and P. aeruginosa medium for 14 d
[1] ZhangY, ZuoT T, TangZ, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
[2] GaoM C, QiaoJ W. High-entropy alloys (HEAs) [J]. Metals, 2018, 8: 108
[3] JiangH, JiangL, QiaoD X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys [J]. J. Mater. Sci. Technol., 2017, 33: 712
[4] ZhangC, ZhangF, DiaoH Y, et al. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys [J]. Mater. Des., 2016, 109: 425
[5] FengH, LiH B, WuX L, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34: 1781
[6] MiaoJ W, GuoT M, RenJ F, et al. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition [J]. Vacuum, 2018, 149: 324
[7] GludovatzB, HohenwarterA, ThurstonK V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
[8] Dan SathiarajG, SkrotzkiW, PukenasA, et al. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy [J]. Intermetallics, 2018, 101: 87
[9] SloneC E, ChakrabortyS, MiaoJ, et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy [J]. Acta Mater., 2018, 158: 38
[10] MaY, YuanF P, YangM X, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J]. Acta Mater., 2018, 148: 407
[11] LiuX W, LaplancheG, KostkaA, et al. Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon [J]. J. Alloys Compd., 2019, 775: 1068
[12] XuD K, LiY C, SongF M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[13] ZhangP Y, XuD K, LiY C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[14] GuC X, XiaR, ZhuG J, et al. Study on corrosion of marine microbial of stainless steel [J]. Ship Eng., 2017, 39(10): 57
[14] 顾彩香, 夏 瑞, 朱冠军等. 不锈钢海洋微生物腐蚀研究 [J]. 船舶工程, 2017, 39(10): 57
[15] Wikie?A J, DatsenkoI, VeraM, et al. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment [J]. Bioelectrochemistry, 2014, 97: 52
[16] XuD K, LiY C, GuT Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
[17] ShiX B, XuD K, YanM C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[17] 史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
[18] WangM F, LiuH F, XuL M. Applied research on the competitive growth of bacteria in biological control of MIC [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 159
[18] 汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究 [J]. 中国腐蚀与防护学报, 2004, 24: 159
[19] DongZ H, GuoX P, LiuH F, et al. Study on electrochemistry characteristics in MIC by wire beam electrodes [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 48
[19] 董泽华, 郭兴蓬, 刘宏芳等. 用丝束电极研究SRB微生物诱导腐蚀的电化学特征 [J]. 中国腐蚀与防护学报, 2002, 22: 48
[20] XiaJ, YangC G, XuD K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481
[21] LiH B, ZhouE Z, RenY B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811
[22] LiH B, YangC T, ZhouE Z, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm [J]. J. Mater. Sci. Technol., 2017, 33: 1596
[23] ZhouE Z, LiH B, YangC T, et al. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Int. Biodeterior. Biodegrad., 2018, 127: 1
[24] ZhaoY, ZhouE Z, XuD K, et al. Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise [J]. Corros. Sci., 2018, 143: 281
[25] ShibataT. 1996 W.R.Whitney award lecture: Statistical and stochastic approaches to localized corrosion [J]. Corrosion, 1996, 52: 813
[26] MengG Z, WeiL Y, ZhangT, et al. Effect of microcrystallization on pitting corrosion of pure aluminium [J]. Corros. Sci., 2009, 51: 2151
[27] GholamiM, HoseinpoorM, MoayedM H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel [J]. Corros. Sci., 2015, 94: 156
[28] ZhangT, ChenC M, ShaoY W, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921
[29] ZhangT, LiuX L, ShaoY W, et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model [J]. Corros. Sci., 2008, 50: 3500
[30] MoradiM, SongZ L, YangL J, et al. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2014, 84: 103
[31] VasylievG S. The influence of flow rate on corrosion of mild steel in hot tap water [J]. Corros. Sci., 2015, 98: 33
[32] AljohaniT A, HaydenB E. A simultaneous screening of the corrosion resistance of Ni-W thin film alloys [J]. Electrochim. Acta, 2013, 111: 930
[33] ZouY, WangJ, ZhengY Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corros. Sci., 2011, 53: 208
[34] MuX, WeiJ, DongJ H, et al. In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy [J]. J. Mater. Sci. Technol., 2014, 30: 1043
[35] YuL B, YanM C, MaJ, et al. Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil [J]. Acta Metall. Sin., 2017, 53: 1568
[35] 于利宝, 闫茂成, 马 健等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为 [J]. 金属学报, 2017, 53: 1568
[36] YuanS J, ChoongA M F, PehkonenS O. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy [J]. Corros. Sci., 2007, 49: 4352
[37] LiY C, XuD K, ChenC F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
[38] HuangY, ZhouE Z, JiangC Y, et al. Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa [J]. Electrochem. Commun., 2018, 94: 9
[39] VenzlaffH, EnningD, SrinivasanJ, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[40] XuD K, GuT Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibriovulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
[41] ParkJ J, PyunS I. Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 25—150 ℃ by analysis of the potentiostatic current transients [J]. Corros. Sci., 2004, 46: 285
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[5] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[6] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[7] Xiaofeng LU, Ming XIAO, Yangmei CHEN, Bangcheng YANG. Bioactivity of Titanium Metal Hybridized with Inactivated Bacterial Biofilm[J]. 金属学报, 2017, 53(10): 1402-1412.
[8] Yongchang QING,Zhiwei YANG,Jun XIAN,Jin XU,Maocheng YAN,Tangqing WU,Changkun YU,Libao YU,Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS[J]. 金属学报, 2016, 52(9): 1142-1152.
[9] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[10] Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. 金属学报, 2015, 51(5): 513-518.
[11] XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER[J]. 金属学报, 2014, 50(3): 373-378.
[12] WANG Binbin, WANG Zhenyao, CAO Gongwang, LIU Yanjie, KE Wei. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA[J]. 金属学报, 2014, 50(1): 49-56.
[13] SUN Feilong, LI Xiaogang, LU Lin, CHENG Xuequn, DONG Chaofang, GAO Jin. CORROSION BEHAVIOR OF 5052 AND 6061 ALUMINUM ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA[J]. 金属学报, 2013, 49(10): 1219-1226.
[14] WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 502-507.
[15] GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming . THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304[J]. 金属学报, 2012, 48(12): 1503-1509.
No Suggested Reading articles found!