Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1142-1152    DOI: 10.11900/0412.1961.2016.00030
Orginal Article Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS
Yongchang QING1,Zhiwei YANG2,Jun XIAN2,Jin XU1,Maocheng YAN1,Tangqing WU3,Changkun YU1,Libao YU1,Cheng SUN1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China
3 Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
Cite this article: 

Yongchang QING,Zhiwei YANG,Jun XIAN,Jin XU,Maocheng YAN,Tangqing WU,Changkun YU,Libao YU,Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS. Acta Metall Sin, 2016, 52(9): 1142-1152.

Download:  HTML  PDF(1531KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of electricity and transport industry, more and more buried pipelines are parallel or cross to the high voltage transmission line and the electrified railway. In this work, microbiological analysis method was used to investigate the effect of alternating current (AC) on the physiology of sulfate reducing bacteria (SRB). Electrochemical methods, including open circuit potential, potentiondynamic polarization curves and electrochemical impedance spectroscopy (EIS) on Q235 steel samples, were performed in soil leaching solution to study the electrochemical behavior with the presence or absence of AC and SRB. The corrosion morphology was observed by scanning electron microscopy (SEM). The results indicate that the AC which current density is 50 A/m2 and frequency is 50 Hz has only a small impact on the growth of SRB, but its alternating electric field can reduce the adsorption and promote the desorption of the biofilm. During the initial experiment, the active biofilm can inhibit the corrosion of Q235 steel due to the electronegativity and the physical barrier, but the microbial metabolites would promote the corrosion during the later experiment without active biofilm. AC can improve the corrosion rate and lead the corrosion products loose because of the rectifying effect, the alternating electric field and the self catalytic effect of pitting corrosion.

Key words:  AC corrosion      sulfate reducing bacteria (SRB)      electrochemistry      microbiologically influenced corrosion (MIC)      rectification effect     
Received:  18 January 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51471176 and 51131001) and National RD Infrastructure and Facility Development Program of China (No.2005-DKA10400)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00030     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1142

Fig.1  Schematic diagram of experimental set-up (WE—working electrode, RE—reference electrode, CE—counter electrode, S—switch, C—capacitance, L—inductance, AC power—alternating current power, SCE—saturated calomel electrode)
Fig.2  Variations of SRB numbers with time in the inoculation experiments
Fig.3  Morphologies of corrosion product from different experiments(a, b) the blank(c, d) the inoculation(e, f) under AC effect(g, h) the inoculation under AC effect
Area Element
C O Si Fe P S Ca K
Blank (A) 35.13 43.80 0.68 20.39 - - - -
Inoculation (B) 13.96 38.34 - 33.38 11.89 1.28 - 1.15
Under AC effect (C) 33.21 37.63 0.82 28.35 - - - -
Inoculation under AC effect (D) 26.36 33.32 - 28.72 4.99 5.22 1.40 -
Table 1  EDS analysis of the corrosion product shown in the rectangle areas (A~D) in Figs.3b, d, f and h (atomic fraction / %)
Fig.4  Surface SEM image of Q235 steel from different experiments
(a) blank (b) inoculation (c) under AC effect (d) inoculation under AC effect
Fig.5  Open circuit potential of Q235 steel of different experiments
Fig.6  Polarization curves over time of the inoculation experiment under AC effect
Fig.7  Polarization curves of different experiments after 2 d (a) and 10 d (b)
Time Ecorr icorr βa βc
mV μAcm-2 mVdec-1 mVdec-1
2 h -0.825 7.297 130.667 300.786
2 d -0.749 2.019 182.506 473.378
5 d -0.829 7.717 132.078 250.546
10 d -0.804 14.040 280.998 369.902
15 d -0.760 5.417 121.429 316.603
Table 2  Fitting results of polarization curves of the inoculation experiment under AC effect
Table 3  Fitting results of polarization curves of different experiments after 2 d
Table 4  Fitting results of the polarization curves of different experiments after 10 d
Fig.8  Corrosion current density of different experiments after 2 d and 10 d
Fig.9  Nyquist (a) and Bode (b) plots of the inoculation experiment under AC effect
Table 5  EIS fitting results of the inoculation experiment under AC effect
Fig.10  Nyquist (a) and Bode (b) plots of different experiments after 2 d
Fig.11  Nyquist (a) and Bode (b) plots of different experiments after 10 d
Fig.12  Equivalent circuit of EIS plots (Rs—electrolyte resistance, Qf—capacitance of the film of the corrosion products or the biofilms, Qdl—capacitance of the double electrode layer, Rf—resistance of the film of the corrosion products or the biofilms, Rct—the charge transfer resistance)
[1] Wakelin R G, Gummow R A, Segall S M.Corrosion-1998, Houston: NACE, 1998: 565
[2] Collet E, Delores B, Gabillard M, Ragault I.Anti-Corros Method M, 2001; 48: 221
[3] Heim G, Heim T, Heinzen H, Schwenk W.3R Int, 1993; 32: 246
[4] Fu A Q, Cheng Y F.Corros Sci, 2010; 52: 612
[5] Goidanich S, Lazzari L, Ormellese M. Corros Sci, 2010; 52: 916
[6] Williams J F.Mater Prot Perform, 1966; 5: 52
[7] Radeka R, Zorovic D, Barisin D.Anti-Corros Method M, 1980; 27: 13
[8] Bertocci U.Corrosion, 1979; 35: 211
[9] Chin D, Sachdev P.J Electrochem Soc, 1983; 130: 1714
[10] Jiang Z T, Du Y X, Dong L, Lu M X.Acta Metall Sin, 2011; 47: 997
[10] (姜子涛, 杜艳霞, 董亮, 路民旭. 金属学报, 2011; 47: 997)
[11] Yang Y, Li Z L, Wen C.Acta Metall Sin, 2013; 49: 43
[11] (杨燕, 李自力, 文闯. 金属学报, 2013; 49: 43)
[12] Zhu M, Liu Z Y, Du C W, Li X G, Wang L Y.J Mater Eng, 2015; 43: 85
[12] (朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 材料工程, 2015; 43: 85)
[13] Haring H E. J Electrochem Soc, 1952; 99: 30
[14] McCollum B, Ahlborn G H.T Am Inst Elect Eng, 1916; 35: 301
[15] Kulman F E.Corrosion, 1961; 17: 34
[16] Cao C N.Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 53
[16] (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 53)
[17] Panossian Z, Filho S, Almeida N D, Filho M P, Silva D L, Laurino E, Oliver J L, Pimenta G S, Albertini J C.Corrosion-2009,Houston: NACE, 2009: 541
[18] Nielsen L V, Galsgaard F. Corrosion-2004,Houston: NACE, 2005: 211
[19] Javaherdashti R.Anti-Corros Method M, 1999; 46: 173
[20] Von Wolzogen Kuhr C.Corrosion, 1961; 17: 293t
[21] Iverson W P.Nature, 1968; 217: 1265
[22] Venzlaff H, Enning D, Srinivasan J, Mayrhofer K J, Hassel A W, Widdel F, Stratmann M.Corros Sci, 2013; 66: 88
[23] Su W T, Zhang L X, Tao Y, Zhan G Q, Li D X, Li D P.Electrochem Commun, 2012; 22: 37
[24] Xu H W, Zhang X, Yang S S, Li G H. Environ Sci, 2009; 30: 1931
[24] (徐慧纬, 张旭, 杨姗姗, 李广贺. 环境科学, 2009; 30: 1931)
[25] Song B, Hou Y L, Ding X.Sci Technol Food Ind, 2013; 34(11): 111
[25] (宋波, 侯怡铃, 丁祥. 食品工业科技学报, 2013; 34(11): 111)
[26] Rowley B A.Exp Biol Med, 1972; 139: 929
[27] Zhong F L, Cao H B, Li X G. China Environ Sci, 2003; 23: 243
[27] (钟方丽, 曹宏斌, 李鑫钢. 中国环境科学, 2003; 23: 243)
[28] Liu J, Zheng J S, Xu L M.Corros Sci Prot Technol, 2002; 14: 23
[28] (刘靖, 郑家燊, 许立铭. 腐蚀科学与防护技术, 2002; 14: 23)
[29] Sun C, Xu J, Wang F H.Ind Eng Chem Res, 2011; 50: 12797
[30] Xu J, Sun C, Yan M C, Wang F H.Corrosion, 2014; 70: 686
[31] Xu J, Wang K X, Sun C, Wang F H, Li X M, Yang J X, Yu C K.Corros Sci, 2011; 53: 1554
[32] Wu T Q, Yan M C, Zeng D C, Xu J, Yu C K, Sun C, Ke W.Acta Metal Sin (Eng Lett), 2015; 28: 93
[33] Liu H Q, Wan Y, Zhang D, Hou B R.Corros Prot, 2011; 32: 81
[33] (刘怀群, 万逸, 张盾, 侯保荣. 腐蚀与防护, 2011; 32: 81)
[34] Gonzalez J, Santana A F, Mirza-Rosca J C.Corros Sci, 1998; 40: 2141
[35] Zuo R, Kus E, Mansfeld F, Wood T K.Corros Sci, 2005; 47: 279
[36] Dunne W M.Clin Microbiol Rev, 2002; 15: 155
[37] Hong S H, Jeong J, Shim S, Kang H, Kwon S, Ahn K H, Yoon J.Biotechnol Bioeng, 2008; 100: 379
[38] Yu L, Duan J Z, Du X Q, Huang Y L, Hou B R.Electrochem Commun, 2013; 26: 101
[1] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[2] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[3] Shaopeng QU, Baizhang CHENG, Lihua DONG, Yansheng YIN, Lijing YANG. Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area[J]. 金属学报, 2018, 54(8): 1094-1104.
[4] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[5] Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. 金属学报, 2017, 53(8): 975-982.
[6] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[7] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[8] CAO Fengting, WEI Jie, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE[J]. 金属学报, 2014, 50(6): 674-684.
[9] YANG Yan, LI Zili, WEN Chuang. EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR[J]. 金属学报, 2013, 49(1): 43-50.
[10] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
[11] Masanori Naitoh CHEN Yaodong Shunsuke Uchida Hidetoshi Okada. ANALYSIS AND VALIDATION OF PIPE WALL THINNING DUE TO FLOW ACCELERATED CORROSION[J]. 金属学报, 2011, 47(7): 784-789.
[12] SUN Min XIAO Kui DONG Chaofang LI Xiaogang. ELECTROCHEMICAL BEHAVIORS OF ULTRA HIGH STRENGTH STEELS WITH CORROSION PRODUCTS[J]. 金属学报, 2011, 47(4): 442-448.
[13] WANG Liwei DU Cuiwei LIU Zhiyong ZENG Xiaoxiao LI Xiaogang. INFLUENCES OF Fe3C AND PEARLITE ON THE ELECTROCHEMICAL CORROSION BEHAVIORS OF LOW CARBON FERRITE STEEL[J]. 金属学报, 2011, 47(10): 1227-1232.
[14] HAN En-Hou WANG Jianqiu WU Xinqiang KE Wei. CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2010, 46(11): 1379-1390.
[15] XU Qun-Jie. Photoelectrochemical Study of the Corrosion and Inhibition on Copper[J]. 金属学报, 2008, 44(11): 1360-1365 .
No Suggested Reading articles found!