|
|
CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS |
Yongchang QING1,Zhiwei YANG2,Jun XIAN2,Jin XU1,Maocheng YAN1,Tangqing WU3,Changkun YU1,Libao YU1,Cheng SUN1( ) |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China 3 Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China |
|
Cite this article:
Yongchang QING,Zhiwei YANG,Jun XIAN,Jin XU,Maocheng YAN,Tangqing WU,Changkun YU,Libao YU,Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS. Acta Metall Sin, 2016, 52(9): 1142-1152.
|
Abstract With the rapid development of electricity and transport industry, more and more buried pipelines are parallel or cross to the high voltage transmission line and the electrified railway. In this work, microbiological analysis method was used to investigate the effect of alternating current (AC) on the physiology of sulfate reducing bacteria (SRB). Electrochemical methods, including open circuit potential, potentiondynamic polarization curves and electrochemical impedance spectroscopy (EIS) on Q235 steel samples, were performed in soil leaching solution to study the electrochemical behavior with the presence or absence of AC and SRB. The corrosion morphology was observed by scanning electron microscopy (SEM). The results indicate that the AC which current density is 50 A/m2 and frequency is 50 Hz has only a small impact on the growth of SRB, but its alternating electric field can reduce the adsorption and promote the desorption of the biofilm. During the initial experiment, the active biofilm can inhibit the corrosion of Q235 steel due to the electronegativity and the physical barrier, but the microbial metabolites would promote the corrosion during the later experiment without active biofilm. AC can improve the corrosion rate and lead the corrosion products loose because of the rectifying effect, the alternating electric field and the self catalytic effect of pitting corrosion.
|
Received: 18 January 2016
|
Fund: Supported by National Natural Science Foundation of China (Nos.51471176 and 51131001) and National RD Infrastructure and Facility Development Program of China (No.2005-DKA10400) |
[1] | Wakelin R G, Gummow R A, Segall S M.Corrosion-1998, Houston: NACE, 1998: 565 | [2] | Collet E, Delores B, Gabillard M, Ragault I.Anti-Corros Method M, 2001; 48: 221 | [3] | Heim G, Heim T, Heinzen H, Schwenk W.3R Int, 1993; 32: 246 | [4] | Fu A Q, Cheng Y F.Corros Sci, 2010; 52: 612 | [5] | Goidanich S, Lazzari L, Ormellese M. Corros Sci, 2010; 52: 916 | [6] | Williams J F.Mater Prot Perform, 1966; 5: 52 | [7] | Radeka R, Zorovic D, Barisin D.Anti-Corros Method M, 1980; 27: 13 | [8] | Bertocci U.Corrosion, 1979; 35: 211 | [9] | Chin D, Sachdev P.J Electrochem Soc, 1983; 130: 1714 | [10] | Jiang Z T, Du Y X, Dong L, Lu M X.Acta Metall Sin, 2011; 47: 997 | [10] | (姜子涛, 杜艳霞, 董亮, 路民旭. 金属学报, 2011; 47: 997) | [11] | Yang Y, Li Z L, Wen C.Acta Metall Sin, 2013; 49: 43 | [11] | (杨燕, 李自力, 文闯. 金属学报, 2013; 49: 43) | [12] | Zhu M, Liu Z Y, Du C W, Li X G, Wang L Y.J Mater Eng, 2015; 43: 85 | [12] | (朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 材料工程, 2015; 43: 85) | [13] | Haring H E. J Electrochem Soc, 1952; 99: 30 | [14] | McCollum B, Ahlborn G H.T Am Inst Elect Eng, 1916; 35: 301 | [15] | Kulman F E.Corrosion, 1961; 17: 34 | [16] | Cao C N.Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 53 | [16] | (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 53) | [17] | Panossian Z, Filho S, Almeida N D, Filho M P, Silva D L, Laurino E, Oliver J L, Pimenta G S, Albertini J C.Corrosion-2009,Houston: NACE, 2009: 541 | [18] | Nielsen L V, Galsgaard F. Corrosion-2004,Houston: NACE, 2005: 211 | [19] | Javaherdashti R.Anti-Corros Method M, 1999; 46: 173 | [20] | Von Wolzogen Kuhr C.Corrosion, 1961; 17: 293t | [21] | Iverson W P.Nature, 1968; 217: 1265 | [22] | Venzlaff H, Enning D, Srinivasan J, Mayrhofer K J, Hassel A W, Widdel F, Stratmann M.Corros Sci, 2013; 66: 88 | [23] | Su W T, Zhang L X, Tao Y, Zhan G Q, Li D X, Li D P.Electrochem Commun, 2012; 22: 37 | [24] | Xu H W, Zhang X, Yang S S, Li G H. Environ Sci, 2009; 30: 1931 | [24] | (徐慧纬, 张旭, 杨姗姗, 李广贺. 环境科学, 2009; 30: 1931) | [25] | Song B, Hou Y L, Ding X.Sci Technol Food Ind, 2013; 34(11): 111 | [25] | (宋波, 侯怡铃, 丁祥. 食品工业科技学报, 2013; 34(11): 111) | [26] | Rowley B A.Exp Biol Med, 1972; 139: 929 | [27] | Zhong F L, Cao H B, Li X G. China Environ Sci, 2003; 23: 243 | [27] | (钟方丽, 曹宏斌, 李鑫钢. 中国环境科学, 2003; 23: 243) | [28] | Liu J, Zheng J S, Xu L M.Corros Sci Prot Technol, 2002; 14: 23 | [28] | (刘靖, 郑家燊, 许立铭. 腐蚀科学与防护技术, 2002; 14: 23) | [29] | Sun C, Xu J, Wang F H.Ind Eng Chem Res, 2011; 50: 12797 | [30] | Xu J, Sun C, Yan M C, Wang F H.Corrosion, 2014; 70: 686 | [31] | Xu J, Wang K X, Sun C, Wang F H, Li X M, Yang J X, Yu C K.Corros Sci, 2011; 53: 1554 | [32] | Wu T Q, Yan M C, Zeng D C, Xu J, Yu C K, Sun C, Ke W.Acta Metal Sin (Eng Lett), 2015; 28: 93 | [33] | Liu H Q, Wan Y, Zhang D, Hou B R.Corros Prot, 2011; 32: 81 | [33] | (刘怀群, 万逸, 张盾, 侯保荣. 腐蚀与防护, 2011; 32: 81) | [34] | Gonzalez J, Santana A F, Mirza-Rosca J C.Corros Sci, 1998; 40: 2141 | [35] | Zuo R, Kus E, Mansfeld F, Wood T K.Corros Sci, 2005; 47: 279 | [36] | Dunne W M.Clin Microbiol Rev, 2002; 15: 155 | [37] | Hong S H, Jeong J, Shim S, Kang H, Kwon S, Ahn K H, Yoon J.Biotechnol Bioeng, 2008; 100: 379 | [38] | Yu L, Duan J Z, Du X Q, Huang Y L, Hou B R.Electrochem Commun, 2013; 26: 101 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|