Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 513-518    DOI: 10.11900/0412.1961.2014.00556
Current Issue | Archive | Adv Search |
FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR
Haiwei HUANG1,Zhenbo WANG1(),Li LIU2,Xingping YONG3,Ke LU1,4
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Shenyang Blower Works Group Co. Ltd., Shenyang 110869
4 Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094
Cite this article: 

Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR. Acta Metall Sin, 2015, 51(5): 513-518.

Download:  HTML  PDF(3294KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A gradient nanostructured (GNS) surface layer was fabricated on a Z5CND16-4 martensitic stainless steel by means of surface mechanical rolling treatment (SMRT). The microstructure in the GNS surface layer was characterized by using SEM and TEM. The results showed that the mean grain size increases with depth, from about 25 nm at the topmost surface layer to the initial value in the matrix. The total thickness of the grain-refined layer is about 150 mm. The electrochemical corrosion property of the SMRT sample was compared with that of the as-received sample in a 3.5%NaCl aqueous solution. It is shown that the pitting corrosion potential increases from about 0.179 V in the as-received sample to about 0.313 V in the SMRT sample, and the self-corrosion potential also increases evidently. The formation of nanostructures, the increased structural homogeneity, and the introduction of compressive residual stresses in the GNS surface layer, as well as the decreased surface roughness, were discussed to promote the pitting corrosion resistance of the SMRT sample.

Key words:  nanostructured material      gradient nanostructure      surface mechanical rolling treatment      martensitic stainless steel      pitting corrosion     
Received:  10 October 2014     
Fund: National Basic Research Program of China (No.2012CB932201)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00556     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/513

Fig.1  SEM image of the as-received Z5CND16-4 stainless steel sample
Fig.2  Cross-sectional SEM image of the Z5CND16-4 stainless steel sample after surface mechanical rolling treatment (SMRT)
Fig.3  TEM images of the SMRT surface layer at different depths
Fig.4  Statistical distribution of grain size of the topmost surface layer
Fig.5  Distributions of residual stresses along depth in the SMRT surface layer
Fig.6  Potentiodynamic polarization curves of the SMRT and the as-received samples in 3.5%NaCl aqueous solution
Fig.7  SEM images of pits after corrosion on the as-received sample (a) and the SMRT sample (b) (d ferrite and martensite are pointed by A and B, respectively)
[1] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[2] Lu K, Lu J. Mater Sci Eng, 2004; A375: 38
[3] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[4] Wang Z B, Tao N R, Li S, Wang W, Liu G, Lu J, Lu K. Mater Sci Eng, 2003; A352: 144
[5] Villegas J C, Shaw L L. Acta Mater, 2009; 57: 5782
[6] Huang H W, Wang Z B, Yong X P, Lu K. Mater Sci Technol, 2013; 29: 1200
[7] Pacquentin W, Caron N, Oltra R. Appl Surf Sci, 2014; 288: 34
[8] Li Y, Wang F, Liu G. Corrosion, 2004; 60: 891
[9] Hao Y W, Deng B, Zhong C, Jiang Y M, Li J. J Iron Steel Res Int, 2009; 16: 68
[10] Balusamy T, Sankara Narayanan T S N, Ravichandran K, Park I S, Lee M H. Corros Sci, 2013; 74: 332
[11] Chen T, John H, Xu J, Lu Q, Hawk J, Liu X. Corros Sci, 2013; 77: 230
[12] Wang T, Yu J, Dong B. Surf Coat Technol, 2006; 200: 4777
[13] Huang R, Han Y. Mater Sci Eng, 2013; C33: 2353
[14] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C. Surf Coat Technol, 2013; 224: 82
[15] Raja K S, Namjoshi S A, Misra M. Mater Lett, 2005; 59: 570
[16] Wang X Y, Li D Y. Electrochim Acta, 2002; 47: 3939
[17] Huang H W, Wang Z B, Lu J, Lu K. Acta Mater, 2015; 87: 150
[18] Zhou L, Liu G, Ma X L, Lu K. Acta Mater, 2008; 56: 78
[19] Wang L M, Wang Z B, Lu K. Acta Mater, 2011; 59: 3710
[20] Arifvianto B, Suyitno, Mahardika M. Appl Surf Sci, 2012; 258: 4538
[21] Bagherifard S, Guagliano M. Eng Fract Mech, 2012; 81: 56
[22] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[23] Liu L, Li Y, Wang F H. Acta Metall Sin, 2014; 50: 212 (刘 莉, 李 瑛, 王福会. 金属学报, 2014; 50: 212)
[24] Moon J, Ha H Y, Lee T H, Lee C. Mater Chem Phys, 2013; 142: 556
[25] Hara T, Asahi H. ISIJ Int, 2000; 40: 1134
[26] Peyre P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Béranger G, Lemaitre C. Mater Sci Eng, 2000; A280: 294
[27] Sun Y, Bailey R. Surf Coat Technol, 2014; 253: 284
[28] Li W, Li D Y. Acta Mater, 2006; 54: 445
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[5] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[7] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[8] Binshi XU,Jinxiang FANG,Shiyun DONG,Xiaoting LIU,Shixing YAN,Chaoqun SONG,Dan XIA. HEAT-AFFECTED ZONE MICROSTRUCTURE EVOLU- TION AND ITS EFFECTS ON MECHANICAL PROPERTIES FOR LASER CLADDING FV520B STAINLESS STEEL[J]. 金属学报, 2016, 52(1): 1-9.
[9] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[10] Shenghua ZHANG,Pei WANG,Dianzhong LI,Yiyi LI. INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION[J]. 金属学报, 2015, 51(11): 1306-1314.
[11] LU Ke. GRADIENT NANOSTRUCTURED MATERIALS[J]. 金属学报, 2015, 51(1): 1-10.
[12] XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER[J]. 金属学报, 2014, 50(3): 373-378.
[13] AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 191-201.
[14] WANG Shuai, YANG Chunguang, XU Dake, SHEN Minggang, NAN Li, YANG Ke. EFFECT OF HEAT TREATMENT ON ANTIBACTERIAL PERFORMANCE OF 3Cr13MoCu MARTENSITIC STAINLESS STEEL[J]. 金属学报, 2014, 50(12): 1453-1460.
[15] WANG Binbin, WANG Zhenyao, CAO Gongwang, LIU Yanjie, KE Wei. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA[J]. 金属学报, 2014, 50(1): 49-56.
No Suggested Reading articles found!